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We argue that a finite proposition system in the sense of Jauch and Piron that admits a unital set of states 
is necessarily purely classical. Based on this result. we investigate the extensibility of O"-additive states on 
projection lattices to all projections of a separable Hilbert space. 

1. INTRODUCTION AND COMMENTS 

The starting point of most quantum logic approaches to 
quantum mechanics is the assumption that the proposi
tion system L (set of yes-no experiments) has the struc
ture of an orthomodular poset. The structural terms such 
as order and orthogonality are interpreted in a more or 
less operational manner. One distinguishes the cases 
where the center of L is equal to {O, I}, not equal to L, 
or equal to L and refers to L as a purely quantal, quantal, 
or purely classical proposition system. The next concept 
introduced is that of a state of a physical system which 
mathematically turns out to be a probability measure on 
the orthomodular poset of propositions. 

One of the purposes of this note is to examine the fol
lowing condition imposed by Jaucht and Piron2 on the 
states of a proposition system (in their case, at least an 
orthomodular lattice): 

If w(x) = w(y) = 1, then w(x /\ y) = 1. 

This condition which relates the quantal to the classical 
"and" has been advocated by these authors in numerous 
papers. 

In Sec. 4 of this paper we show that a finite proposition 
system in the sense of Jauch and Piron that admits a rea
sonable set of states (unital set of states) is purely clas
sical (i.e., a Boolean lattice). Likewise, a quantal pro
position system in the sense of Jauch and Piron with a 
unital set of states must be necessarily infinite. 

Theorem 4.3 which establishes this result is based upon 
a "Hilfssatz" (Theorem 3.5) whose proof is in Sec. 3. 
Both theorems will be of importance in the theory of strong 
polytopes. 3 This (mathematical) theory is partially de
signed to make the connection between the empirical 
logic approach4,5 and the convex set approach6,7 to quan
tum mechanics in the case of a finite system, i.e., finitely 
many yes-no experiments. 

In Sec. 5 we investigate the extensibility of (i-additive 
states from projection lattices to all projections of a 
separable complex Hilbert space. Based on the results 

in Sec. 4 we then show (Theorem 5.3) that a finite quantal 
proposition system which can be "realized" in Hilbert 
space always has at least one state that is not induced 
by a "Hilbert space state." In a sense, Hilbert space as 
the state space of a finite quantal proposition system is 
too small. 

2. PRELIMINARIES 

Let {L, ::;} be a po set with a least element (0) and a 
greatest element (1). We say y covers x, in symbols x -< y, 
if x < z ::; y implies that z = y, x,y,z E L. An element 
x E L is called an atom if 0 -< x. L is called atomic if 
for every x E L - {O} there exists an atom y E L such 
that y ::; x. L is called atomistic if x = v {y E L Iy ::; x, Y 
atom} for all x E L - {O}. 

An orthocomplementation on L is a mapping x ..... x' 
on L such that (i) x" = x, (ii) x v x' exists and is equal to 
1, and (iii) if x ::; y, then y' ::; x'. A poset admitting an 
orthocomplementation is called orthocomplemented. Note 
that if x v y exists; then x' /\ y' exists and x' /\ y' = 

(x v y),. A pair x, y E L is said to be orthogonal, denoted 
x ..L y, if x ::; y'. An orthocomplemented poset {L, ::;, '} is 
called an orthomodular poset if (i) x ..L y implies that x v y 
exists, and (ii) x ::; y implies that there exists Z E L such 
that x..L Z and x v Z = y. One can actually show that 
Z = x' /\ y. An orthomodular poset that is indeed a 
lattice is called an orthomodular lattice. 8 It is a well
known fact that an atomic orthomodular lattice is atom
istic. 9 

Let {L, ::; , '} be an orthomodular poset. A mapping 
v:L ..... R (R the real numbers) satisfying (i) v(O) = 0, 
(ii) if x..L y, then v(x v y) = vex) + v(y) is called a 
signed state. If we define (ttVt + t2V2) (x) = ttVt(x) + 
t2V2(X), tb t2 E R, Vb V2 signed states, x E L, then the 
set of signed states W becomes a real vector space. A 
signed state w for which w(1) = I and w(L) ~ [0, 1] ~ R 
is called a state. Clearly, the set of states Q is a convex 
subset of W. Q is said to be strong for L if {w E Q I w(x) = I} 
~ {w E Q I w(y) = I} implies that x ::; y. Q is called unital 
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for L if for every x E L - {O} there exists a state WE Q 

such that w(x) = I. The implication "strong ~ unital" 
holds true. 

Let {L, .5, '} be an orthomodular lattice. A state W 

is said to be Jauch-Piron if w(x) = w(y) = I implies that 
w(x A y) = I. The set Q is said to have the Jauch-Piron 
property if every element W E Q is a lauch-Piron state. 

Theorem 2.1: Let {L ~, '} be an atomic orthomodular 
lattice and assume that Q has the lauch-Piron property. 
Then Q is strong if and only if it is unital for L. 

Proof: Assume that {w E Q I w(x) = I} ~ {w E Q I w(y) 
= I} for X,Y E L. If x = 0 then clearly x ~ y, so assume 
that x #- O. Let z be an atom such that Z $ x. Since Q 
is unital there exists a state W such that w(z) = I, thus 
w(x) = 1 and therefore w(y) = I. The state W being 
Jauch-Piron, we get w(z A y) = I. This implies that 
z A y #- O. Now, z is an atom and 0 #- Z A Y ~ z, hence 
Z A Y = Z or equivalently Z ~ y. This is true for all atoms 
z with z ~ x. L is atomistic, thus x = v {z ELI z ~ x, 
z an atom} ~ y. The converse is obvious. 

3. A "HllFSSATZ" 

We list several definitions and facts concerning poly
topes lO that will be used in the sequel. 

Let W be an Euclidean space and P be a convex subset 
of W. An element W E P is called an extreme point of P 
provided W = tWI + (I - t)wz, Wb Wz E P, t E (0, I) 
implies that W = WI = wz. The set of extreme points of P 
is denoted by ext P. A convex, compact subset P of W 
is called a polytope if ext P is finite. A polytope may be 
equivalently defined as the convex hull of a finite subset 
or as a bounded set which is the intersection of finitely 
many closed half- spaces. By the theorem of Minkowski
Caratheodory, P = con ext P. Note that dim P + I ~ 
II ext P (dim P = affine dimension of the affine span of P 
in W; we put dim 0 = -I). If dim P + I = II ext P, 
then P is said to be a simp/ex. Clearly, jf P is a simplex 
then ext P is an affinely independent set in W; if V ~ W 

is a finite affinely independent subset then con V is a 
simplex with dim con V = II V - I. 

Let P be a polytope. A subset a ~ P is called a face of 
P provided that for Wb Wz E P, t E (0, I), tWI + (I - t)W2 
E a <0> Wb Wz E a. A face is a polytope in its own right. 
If b is a face of a which is a face of P, then b is a 
face of P; if b is a face of P and b ~ a, then b is a face 
of a. Note that a = aff a n P. The set-intersection of a 
family of faces of P is again a face of P. Therefore, the 
set of faces of P ordered by set inclusion, denoted by 
{F(P), :::::}, is a lattice with 0 ( = 0) as the least, and 
I (= P) as the largest element (as usual A denotes 
infimum, v denotes supremum). Note that F(P) is a finite 
set. An element aE F(P) covered by I is called afacel of 
P; an element a E F(P) that covers 0 is called aver/ex 
of P. A face a #- I is equal to the infimum of all facets 
containing it. The set of vertices of a face a is denoted 
by V(a). Note that V(a) = V(I) n a and that V(1) = 
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{{W} Iw E ext P}. If 0 -< bo -< b l -< ... -< br -< I, b, EF(P) 
(i = 0, 1,2, "', r), then dim b, = i. 

Let WEP, the face a(w) = A{bEF(P)lwEb} is called 
face generated by w. Clearly, a v b = a(a U hJ. The 
interior of P is defined to be the set pI = {W E pi a(w) 
= I}. Note that P! = po, (= topological interior of P 
in the Euclidean topology relativized to aff P). If P of. 
o then pI #- 0. 

If P is a simplex, then S ~ ext P implies that con S E 

F(P). Using this fact one easily shows that {F(P), $} is 
a distributive lattice. We get immediately: 

Lemma 3.1: Let P be a simplex and assume that V' ~ 
V(I). If V {rlI'E V'} = I, then V' = V(I). 

Lemrna 3.2: Let P and Q be polytopes. If (i) P ~ Q, (ii) 
dim P = dim Q, and (iii) F(P) - {I} ~ F( Q), then P = Q, 

Proof: Note that aff P=affQ, since dim Q=dim P and 
P ~ Q. Therefore, given ).i E Q, there exists WI' Wz E P and 
/ ::::: 0 such that ).i = fWI + (1 - I) Wz. 

Due to compactness of P, sup {s E R I SWI + (I - s) W2 E 

P} is finite and attained, denoted by so. Clearly So ::::: I. 
Since s WI + (I - s)wz ¢ P for all s ::::: so' we have Wo = 

SOWI + (I -So)WZEP - pO'. Thus a(wo)EF(P) - {I}. 
Now, if 0 ~ I ~ so, then clearly ).i E P. If I > so, then 

Wo = so())lt - (I - t)wzlf) + (I - SO)W2 = So ))/t + (l -
solt)wz with Soil E (0, I). Since a(wo) E F(Q), )), Wz E Q, we 
get )), Wz E a(wo). Hence)) E P. 

Lemma 3.3: Let P be a polytope and assume that its 
face-lattice admits an orthocomplementation a 4 a' such 
that {F(P), ~,'} is an orthomodular lattice. Then for 
any face a, dim a + I = number of elements in a maximal 
orthogonal set of elements of Veal. 

Proof': We can assume that a #- O. Let {rl' 1'2, "', I'd 
be a maximal orthogonal set in Veal. We extend it to a 
maximal orthogonal set in V( I), say {\'I' 1'2, "', I'k' rk , I, "', 

I'm}. Denote bj = v (I Vi' for 0 $ j ::; 111 - I. 
Suppose that hj<c$b;vl';,z=h;'I' By ortho

modularity, there exists dE F(P) such that d of. 0, d.l b; 
and c = bj v d, but rj,2 ~ bj, d ~ bj, hence l'j,2 = 

bj A (b j V Vjt2) and d = bj A (b j v d). Having bj V d 
= c ~ bj V t'ji"2 we get 0 #- d ~ 1';+2; I'ji"Z being an 
atom, we conclude that d = I'j"2' Thus C = bi+!' By 
orthomodularity and maximality of the set in question, 
we also get bm - I = 1 and bk- I = a. Therefore, 0 -< ho -< 
b l -< ." -< bm - I = I, thus dim a = dim bk I = k - I. 

Lemma 3.4: Same assumption as in Lemma 3.3. Let a 
E F(P). If every face b with b < a is a simplex, then a is 
a simplex. 

Proof: We can assume that dim a > 0, so II Veal ::::: 2. 
Let {VI' 1'2, ... , I'm' I'm+d be a maximal orthogonal set 
in V(a). By Lemma 3.3, dim a = m. We introduce the 
following notation: F = {I, 2, 3, ... , m + I}, S(/) = 
con {wiliE!} and b(/) = v," II'" where I <;; F and {w,} 
= Vi (i E F). 

If I c F, we get by orthomodularity (see proof of the 
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foregoing lemma), b(I) < a. Thus for all I c F, b(I) is a 
simplex. 

Assume that Ie F. Since {Vi liE I} ~ V (b(I») and 
[0, b(I)] is a sublattice of F(P), thus v ~EIVi = V iEI V, = 
b(I), we get by Lemma 3.1, V(b(l)) = {viliE I}. There
fore, b(l) = SCI) for all I c F. 

Clearly S(F) ~ a is a polytope and every face of S(F) 
is of the form SCI) for some I ~ F. Thus every face of 
S(F) different from S(F) is a face of a. 

In view of Lemma 3.2 we are going to show that S(F) is 
an m-dimensional simplex; to do so, it is enough to prove 
that {WI> Wz,"', Wm, wm+d is affinely independent. Clearly, 
{Wi' Wz,"', wm } is affinely independent since S(I) (I = {I, 2, 
... , m}) is a simplex and V(S(I») = {w, liE I}. If wm+i E 
aff {WI'''', Wm}, then aff S(I) n P = b (I). Hence Vm+1 ::;; 
V iE!Vi or b(l) = v icoFVi = a, which is a contradiction. 

Therefore, S(F) is a simplex and dim S(F) = m = 
dim a. Using Lemma 3.2 we conclude that S(F) = a, 
thus a is a simplex. 

Theorem 3.5: Let P be a polytope. If its face lattice 
admits an orthocomplementation a --> a' such that 
{F(P), ::;; , '} is an orthomodular lattice, then P is a simplex. 

Prool(by induction): All faces of dimension less than or 
equal to zero are simplices. Assume now, that all faces a E 
F(P) with dim a ::;; m - 1 are simplices. Let b E F(P) 
with dim b = m. If a < b, then dim a ::;; m - I. By 
Lemma 3.4, b is a simplex. Thus all faces with dimension 
less than or equal to m are simplices for - 1 < m ::;; 
dim P. Therefore, P is a simplex. 

4. THE JAUCH-PIRON PROPERTY 

Recall that the set of signed states Won an orthomodu
lar poset {L, ::;; , '} is a real vector space containing the 
set of states Q as a convex subset. 

With every x E L we associate a linear functional on 
W as follows: 

liv) = vex), v E W. 

Note that lx' = II - Ix and that the set of linear func
tionals obtained in this fashion is total, i.e., liv) = 0 
for all x E L implies that v = O. If {L, ::;; , '} is a finite 
orthomodular poset, then UxIXEL} is a finite total set, 
hence the dual W*, and finally W is finite dimensional. 

Lemma 4.1: Let {L, ::;; , '} be a finite orthomodular 
poset. Then Q is a polytope. 

Prool: One verifies immediately that Q = n x E Llx-1 

[0, I] n 11-1 [I, (0). Thus Q is the intersection of finitely 
many closed half-spaces. 

Recall that W is finite dimensional. Since Ux I x E L} 
is a total set, a local base for the unique Hausdorff to
pologyon W(e.g., Euclidean topology) is given by the sets 
{N(e, x)lx E L, e > O}, where N(e, x) = {v E W Illx(v) 1< 
e} together with their finite intersections. 
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Now, Q ~ 21e N(e, x) for all x ELand e > O. This 
shows that Q is bounded. Hence {j is a polytope. 

Let {L, ::;; ,'} be an orthomodular poset. Denote M 
= {x E LI exists wE Q such that w(x) #- 0, l}. Clearly, if 
x E M, then x' E M. If x ¢ M, then either w(x) = 0 for 
all WE Q or w(x) = 1 for all WE Q. For if there exist 
WI> Wz E Q such that WI(X) #- 0 and wz(x) #- 1, then WI(X) = 
1 and wz(x) = 0 since x ¢ M. Now (wd2 + wz/2) (x) = 

wi(x)/2 + wz(x)/2 = 1/2. But wd2 + wz/2 E Q, thus (wd2 
+ wz/2) (x) = 0 or I, which is a contradiction. 

Given xEL, we define (i(x) = {wEQlw(x) = l}. If 
tWI + (1 - t)wz E (i(x), t E (0, I), WI, Wz E Q, then (tWI + 
(1 - t)wz)(x) = tWI(X) + (I - t)wz(x) = I. Since WI(X), 
wz(x) E [0, I] we conclude that WI(X) = wz(x) = I. Hence 
WI> Wz E (i(x). The set (i(x) ~ Q is clearly convex, hence 
(i(x) is a face of Q. Furthermore, note that dO) = 0, (i(l) 
= 1 (= D), and (i(x) = I x-

1 (I) n Q. 

Theorem 4.2: Let {L, ::;; , '} be a finite orthomodular 
poset. Then for every facet a of Q there exists an element 
x E L such that (i(x) = a. 

Proof: (i) Assume that M = 0. Furthermore, assume 
that Q #- 0. If there exists WI, Wz E Q such that WI 01- Wz, 
then (tWI + (I - t)wz) (x) = 1 or 0 for all x ELand 
for all t E R (see the remark made above). We have 
(twi + (I - t)wz) (I) = I. Therefore, tWI + (1 - t)wz E 

Q for all t E R, which is a contradiction since Q is 
bounded (Lemma 4.1). Hence {) = {w}. This shows that 
if M = 0 then dim Q ::;; O. Clearly, for these cases the 
assertion holds true. 

(ii) Assume that M #- 0. First we show that Q = n x=M 
[fx-1( - 00, I] n aff QJ. Let v E Wand assume that vex) 
::;; 1, for all XE M, and that v = tWI + (I - t) Wz for 
some WI> Wz E Q, t E R. Since v(1) = 1 and vex') = v(1) -
vex) ::;; I, we get vex) ~ 0 for all x EM. If x ¢ M then 
vex) = tWI(X) + (1 - t)wz(x) = 0 or I. Therefore, v is a 
state on L. The converse is obvious. 

Now, if a = 0, we are done. If a 01- 0 then al 01- 0. 
Select wEal. We claim that there exists x EM such that 
fx(w) = I. If it is not so, then WEn xM [lx- 1( - 00, I) n 
aff Q] ~ Q. Thus wE QO. since W is contained in the 
intersection of finitely many open sets in the Euclidean 
topology relativized to aff Q and this intersection is con
tained in Q. Since QO. = Qf we get I = a(w) ::;; a which 
contradicts the assumption that a is a facet. 

Now let x be an element of M such that fx(w) = I. 
Since WE f;I(1) n Q = (i(x), we conclude that a = a(w) 
::;; (i(x). But (i(x) 01- 1, or else x ¢ M. Since a is a facet, 
we get a = (i(x). 

Theorem 4.3: Let {L, ::;;,'} be a finite orthomodular 
lattice. Its set of states Q is unital and has the Jauch
Piron property if and only if {L, ::;;} is a Boolean lattice. 

Prool: A finite orthomodular lattice is both atomic and 
atomistic. Hence, if Q is unital then, by Theorem 2.1, Q 
is also strong. Therefore, the mapping x E L --> (i(x) E 
F(D) is an order isomorphism, i.e., x::;; y ¢> (i(x) ::;; (i(Y)· 
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Note that in this case the above mapping is one-to-one. 
Using again the lauch-Piron property of Q, we get 
(i( /\ iE/Xi) = /\ iE!(i(X,), the infimum of faces being equal 
to their set intersection. 

Let aEF(Q) - {I} and let {bl> b2 , "',bm } be the set 
of all facets each of which contains a. Then a = /\ 'F=lb,. 
By Theorem 4.2, to every I ::s; i ::s; m, there exists an 
element X, E L such that b, = (i(x,). Now (i( /\ 7'=lX,) = 
./\~la(x,) = /\'!'=lb, = a. Therefore, the maping X -> a(x) 
1S an onto order isomorphism. 

Given a E F(Q) define a' = a(a-l(a»)'. One immedi
ately verifies that a -+ a' is an orthocomplementation on 
{F(Q), ::s;} that makes {F(Q), ::s;, '} into an orthomodular 
lattice ortho-order isomorphic to {L, ::s;, '}. Using The
orem 3.5, we conclude that Q is a simplex. The face
lattice of a simplex being distributive, we conclude that 
{L, ::S;, '} is a distributive, complemented lattice, hence a 
Boolean lattice. 

The converse of the theorem is easily shown. 

5. PROJECTION LATTICES WITH THE 
EXTENSION PROPERTY 

Let H be a separable complex Hilbert space of dimension 
greater than or equal to three. B(H) denotes the set of 
bounded linear operators on Hand P(H) denotes the 
set of orthogonal projections on H. We define a partial 
ordering in P(H) as follows: E ::s; F <¢> EF = E (<¢> (cf;, Ecf;) 
::s; (rf;, Frf;) for all rf;E H). Then the poset {P(H),::s;} is a 
complete lattice with the identity operator as the greatest 
element and the zero operator as the least element. The 
mapping E -> E"- = 1 - E is an orthocomplementation 
that makes {P(H), <, "-} into a complete orthomodular 
lattice. 

A subcomplete sublattice {L, ::s;} of {P(H), ::s;} that 
contains I and is closed under the mapping E -> £1- is called 
a projection lattice. Clearly, {L,::s;, "-} is a complete 
orthomodular lattice. Note that the set of projections of 
a von Neumann algebra equipped with the induced order 
is a projection lattice.!l 

We are going to consider a-additive states on projection 
lattices. Generally speaking, a state w on a orthomodular 
poset L is said to be a-additive provided that for every 
countable set {X'}~l 5; L of pairwise orthogonal ele
ments for which v ~lX, exists, w( v ~lX,) = ~~lW(Xi) 
holds true. It is obvious that, by restriction, every a-ad
ditive state on P(H) induces a (i-additive state on every 
projection lattice. A projection lattice {L, ::s;} is said to 
have the extension property provided every (i-additive 
state on L can be extended to a (i-additive state on P(H). 
The issue of this section is to give a characterization of 
those finite projection lattices that have the extension 
property. 

We need the following lemmas: 

Lemma 5.1: Let D be a von Neumann density operator 
and E be a projection on H. Then tr (DE) = 1 if and only 
if DE = D. 
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Proof: Assume that tr(DE) = 1. Then tr(DE"-) = 

tr(D(l - E» = O. Since O::s; D = D*, we get 0 = 
tr(DE"-) = tr(E"- DE"-) = tr(E"- -vi D -vlDE"-) = tr« -vllY E"-)* 
(-vi D E"-». Having 0 ::s; (-vi D E"-)* (-vl15 £1-) we conclude 

that (-vlD E "-)* ( -vi D E "-) = 0, thus -vi D E"- = O. Hence, 
0= -vi D -vi D E"- = DE"- = D - DE. Therefore, D=DE. 
Conversely, if DE = D, then tr(DE) = tr(D) = 1. 

Lemma 5.2: Let F, E E P(H) and D be a von Neumann 
density operator. Then tr(DE) = tr(DF) = 1 implies that 
tr(D(E /\ F» = I. 

Proof: tr(DE) = tr(DF) = I implies that DE = DF = 
D. Multiplication is continuous in the strong operator 
topology, thus D(E /\ F) = D s-limn_ oo (EF)n = s-limn _ oo 

D(EF)n = D. Thus, tr(D(E /\ F» = 1. 

Theorem 5.3: Let {L, ::s;} be a finite projection lattice. 
The following statements are mutually equivalent: 

(i) L has the extension property; 
(ii) {L, ::s;} is a Boolean lattice; 
(iii) the elements of L commute pairwise. 

Proof: (ii) <¢> (iii): A well-known fact. 
(i) => (ii): Assume that for every state wE Q(L) there 

exists a a-additive extension w- to P(H). By Gleason's 
theoremlz there exists a von Neumann density operator 
D such that w-(E) = tr(DE) for all E E P(H). Now if 
w (E) = w (F) for E, F E L, then tr(DE) = tr(DF) = 1. 
Thus, weE /\ F) = w-(E /\ F) = tr(D (E /\ F» = 1 by 
Lemma 5.2. Thus Q (L) has the lauch-Piron property. 

Given EEL - {O}, select </> E E(H) with II </> II = 1. 
Then the linear operator D"" defined by D",cf; = (</>' cf;) </>, 
is a one-dimensional projection, hence a von Neumann 
density operator having the property that D",E = D",. 
Then the mapping FE L -> tr(D",F) is a state on Land 
tr(D",E) = tr(D",) = 1. Thus Q(L) is unital for L. 
Therefore, by Theorem 4.3, {L, ::s;} is a Boolean lattice. 

(ii) => (i): Let {L, ::s;} be a finite projection lattice and 
assume that it is Boolean. Let {EJ, Ez, "', Em} be the 
set of atoms in L. We have E, .1 E j for i i= j since L is 
Boolean and also v ~lE, = 1::"=IE, = I. 

Now, let w be a state on L. For every 1 ::s; i ::s; m select a 
normed vector </>, E E,(H) and define cf; = 1:'~l -vi w(E,} </>,. 

Then 11cf;1I = 1 since 1:'F=IE; = I and D", becomes a von 
Neumann density operator. The mapping F -> tr(D",F) 
is a (i-additive state on P( H). One easily verifies that 
tr(D",E,) = wee,). 

Since every nonzero element in {L, ::s;} is the sum of a 
subset of the atoms {EJ, E2, ... , Em} and the trace-func
tional is linear, we get the assertion. 

One final observation: 

Theorem 5.4: The projection lattice of a von Neumann 
algebra, acting on a separable complex Hilbert space H, 
and not containing a type l z factor as direct summand 
has the extension property. 

Proof: Let N be a von Neumann algebra not contain-
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ing a type 12 factor. We denote by {L(N), $} the pro
jection lattice of N. Let A E Nand UJ be a q-additive 
state on L(N). Let {EA}, resp. {FA}' be the spectral 
family of (A + A*)/2, resp. (A - A*)/2i. We have {EA}, 

{FA} s;; L(N). 
Lodkin has shown13 ("generalized Gleason theorem") 

that the positive functional 

I(A) = r~dUJ(EA) + ir~dUJ(FA)' 
is linear in N. Clearly, II L(N) = UJ. Recall that if H is 
separable and g is a positive linear functional on a von 
Neumann algebra N, then g I L(N) is a q-additive state on 
L(N) if and only if g is uItraweakly continuous on Nand 
gel) = 1.14 Furthermore, to every positive, ultraweakly 
continuous linear functional g on N there exists a posi
tive, ultraweakly continuous linear functional g- on B(H) 
such that g-I N = g and g-(l) = g(I ),15 

Thus, I is a positive, ultraweakly continuous linear 
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functional on N. Let/- be a positive, ultraweakly continu
ous extension to B(H). Then r I P(H) is a q-additive 
state on P(H) and r I L(N) = IIL(N) = UJ. 
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Nonuniqueness in the inverse source problem in acoustics 
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A recently developed formulation of the inverse source problem as a Fredholm integral equation of the 
first kind provides motivation for the development of analytical characterizations of the non uniqueness in 
the inverse source problem. Nonradiating sources, i. e., sources for which the field is identically zero 
outside a finite region, are introduced. It is then shown that the null space of the Fredholm integral 
equation is exactly the class of nonradiating sources. 

1. INTRODUCTION 

Recently, Bleistein and BojarksP presented a new 
formulation of the inverse source problem for the scalar 
wave equation. The source function is shown to be a 
solution of a Fredholm integral equation of the first 
kind. Here we consider that equation and the extension 
of the formulation to Maxwell's equations, as well. 
We show that the solutions to these integral equations 
are not unique. We further relate this nonuniqueness 
to features of the direct radiation problems. 

More specifically, we give analytic characterizations 
of sources which produce no radiated field. We show 
by example that such nonradiatiating sources do exist. 
Furthermore, we exploit our representation of the 
class of non radiating sources to show that they are also 
the elements of the null space of the integral operator 
which arises in our formulation of the inverse source 
problem. This is true both in the scalar and in the 
electromagnetic case. Thus, if nonuniqueness is to be 
viewed as a flaw, in these cases it is a flaw of the direct 
radiation phenomena, rather than a flaw of our formu
lation of the inverse problem. 

For sources known a priori to be impulsive with 
known time of impulse, we find a unique solution to the 
scalar inverse source problem. For the vector problem, 
information about the vector nature of the source is 
required, as well. Research is presently in progress 
on the other types of additional information that suffices 
to make the solution of the inverse source problem 
unique. 

We note that the existence of non radiating sources has 
been demonstrated earlier in the literature. For ex
ample, one can use Green's theorem to replace a source 
distribution in a domain by a monopole-dipole distribu
tion over any surface bounding that domain (see, for 
example, Ref. 2, p. 192) such that each yields the 
same field outside the bounding surface. This demon
strates nonuniqueness. The "difference" of these source 
distributions then yields zero field outside the bounding 
surface. 

An alternative demonstration of non radiating sources 
proceeds as follows. 3 Let us suppose that we seek 
a non radiating source for the wave equation, for ex
ample. Let f be a function which is zero outside a finite 
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domain. Apply the wave operator to f and let this new 
function be a source for the wave equation. The solu
tion to the inhomogeneous wave equation with this 
source is f, itself, which is zero outside a finite do
main. Thus, the source is nonradiating. 

In an earlier paper, Miiller4 also discussed (far field) 
approximately non radiating sources from the point of 
view of efficiency of radiating systems. 

We repeat that the additional characterizations of non
uniqueness which we present here are relevant to our 
analysis of the inverse source integral equation. We 
remark that Friedlander presents one of our character
izations as an asymptotic result. That is, for the wave 
equation, he shows that the radiated field is zero to 
order 1/ r, with r being the distance from the origin, 
if the Fourier transform of the source distribution is 
zero on the hypercone, w=ck. Here w is frequency, 
c is sound speed, and k is wavenumber. 

2. SOME REMARKS ABOUT DIRECT PROBLEMS 

Here we shall discuss the direct problem. Our ob
jective is to bring out certain features of the direct 
problem which are relevant to the uniqueness or deter
minacy of solutions of the inverse problem. 

To begin, let us consider the wave equation 

(2.1) 

with 

U(r,t)=O, F(r,t)=O, t<to' (2.2) 

Here V2 is the three-dimensional Laplacian and to is 
finite. Furthermore, we shall assume that the source 
distribution is confined to (assumed to be nonzero only 
in) a finite domain f) o' This domain is assumed to be 
contained in a large domain j) (see Fig. 1). Ultimately, 
in the inverse problem, we shall assume that the radi
ated field is observed on 'OJ) 0 

We introduce the time transform, 

u(r, w) = r: U(r, t) exp(iwt) dt 

Copyright © 1977 American Institute of Physics 

(2.3) 
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and the space-time transform 

;t{k, w) == III I U{r, t) exp{ilwt - k . r]} dt lflr 

== I I I u{r, w)exp{- ik· r) tfr. (2,4) 

Here, the domain of integration is all of space in the 
latter, all of space-time in the former. Throughout, 
we shall adhere to this convention of denoting functions 
in space-time by capital letters, their temporal Fourier 
transforms by lower case letters and temporal-spatial 
transforms by lower case letters with tildes (-) over 
them. 

The time reduced problem equivalent to (2.1) is 

with u outgoing, which we represent as 

exp{iwr/ c) A 

u(r,w)- 4 uo{r,w), r-oo. 
rrr 

Here, we have introduced the notation 

r==lrl, r==r/r. 

(2.5) 

(2.6) 

(2.7) 

We shall refer to uo(r, w) as the phase and range normal
izedfar field amplitude. 

We introduce the outgoing Green's function 

g(R w) = exp{iwR/ c) R -I r ' 1 
' 4rrR' - - r , (2.8) 

and can then express the solution to (2.5) and (2.6) as 

u{r, w) == II ff{r', w )g{R, w) lflr'. (2.9) 

[h 
Let us define a positive number "a" such that the sphere 
of radius a centered at the origin contains the domain 
f) 0 and that this sphe re, in turn, is contained in f) . 
For r>a, we may represent u by 

xfa flm{r', W)jI(Wr' / c)r,2dr' , (2.10) 

o 

r>a. 

Here, we have used the representation of g valid for 
r> a, r' < a (Ref. 5, p. 541). In this equation 

flm{r', w) == lor sine' de' I 2r d¢' f{r', w )Yim(e' , ¢'), 
o 

1=0,1,2,"', Iml""l. (2.11) 

These functions are also the coefficients of f in the 
expansion 

~ J... 
f{r, w) == 2..; 6 f,m(r, w)Y'm(e, ¢) (2.12) 

1=0 m=-I 
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with respect to the complete set of functions Ylm(B, ¢). 
From the form of (2. 10), we see that the radiated field 
(i. e., u for r> a) depends only on the projections of the 
coefficients flm on the functions rjl{wr/ e), I m I "" l. 
Thus, we can create a source for which there is no 
radiated field by setting these projections equal to 
zero. 

We introduce the following: 

Definition 1: Let f{r, w) be a source function which is 
nonzero only inside a finite domain iJ o' Such a source 
will be called nonradiating if the solution (2.9) is zero 
outside of some sphere containing j) o' 

By studying the spherical harmonic expansion of the 
solution we have proven the following. 

Lemma 1: A source f, nonzero only inside a finite 
domain f) 0' is nonradiating if and only if the integrals 

clm = r flm{r, w)jl(wr/ c)r dr (2.13) 
o 

are zero for all l=O, 1,2,"', I m I '" 1, with the sphere 
of radius a sufficiently large to contain Do. 

We shall now generate a nonradiating source by using 
this idea of projection. Let f be given by 

1 
jo(wr/ c) 

f{ )
_ 6(r)- J~?j~(wr/e)dr' r""a, 

r,W - (2.14) 

0, r>a. 

Here 6 (r) is the Dirac delta function, The function f was 
constructed merely by seeking a function exactly of the 
form (2.12) but having the same projections elm as the 
delta function. One can now verify by direct substitution 
into (2.9) or (2.10) that, in fact, for this source, the 
radiated field is identically zero. 

We note here that the integration in (2.15) can be 
carried out explicitly to yield 

( (2w) 3 jo(wr/ c) 
f{r,w)=6 r)- C [2wa/e-sin(2wa/e)] ' r"'a. 

(2.15) 

Indeed, we can even obtain F(r, t) explicitly. The result 
after much calculation is 

F{r, t) 

=6 r)6(t - -2H(a-r)· 6 t- -- - - - -( ) 3 {'( 2a+r)[c 1 (C)3 
re e 5a 2 a 

( C )3 [( r) ( 2a + r) (, r) (, 2a - r) --;; t- c 5t--e--(+c 5 t!--e-

F(r, t) ",0, r> a. (2.16) 

The main point of this result is to explicitly exhibit that 
the source has finite extent both in space and time, i. e. , 
the source is physically reasonable. 
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We see in this example that by observing the radiated 
field outside r= a, we cannot distinguish between the 
impulsive source oCr) and its "equivalent source" 
implicit in (2.13). Indeed, if we replace a by a' <a 
in (2.13), we obtain a whole continuum of equivalent 
sources indistinguishable from oCr) on the basis of 
observations of radiated field data, alone. We emphasize 
this latter point since, as we shall indicate below, 
certain types of additional pieces of information will 
suffice to eliminate such nonuniqueness. 

We shall now derive an alternative characterization 
of non radiating sources. To do so, we consider the 
space-time Fourier transform of the source, namely, 

j(k, w) = J J J fer, w)exp(- ik· r) d3r, (2.17) 

and substitute in this formula the identity (Ref. 5, p. 
567), 

exp(-ik. r) =411' t t (-i)ljl(kr)Ylm(Q!,B)Ytrn(e,CP). 
1=0 m=-I 

(2. 18) 

Here (e, CP) are the polar angles of r and (a ,(3) are the 
polar angles of k. We find that 

j{k, w) =411' I~ m~1 (- i)lY I • (ci.,Mj" flm(r,w)j/(kr) rdr, 

o (2.19) 

withflm defined by (2.11). 

If f is a nonradiating source, then the integrals on 
the right in (2.19) are all zero when 

w=ck. (2.20) 

This is a four-dimensional cone in ~, w)-space and we 
see that on this cone the transform f{k, ck) is zero. 
Alternatively, if ](k, ck) = 0, then, by the completeness 
of the functions Y lm(a,i3), the integrals in (2.19) must 
all be zero for w = ck. Thus we have proven the 
following: 

Theorem 1: Let f(r, w) be a function regular enough 
to have an expansion in spherical harmonics and non
zero only for r ~ a for some finite a. Then fer, w) is a 
nonradiating source if and only if 

f{k, ck) = o. (2.21) 

The energy radiated at frequency w can be shown to 
be proportional to the integral of Ijl2 over the surface 
k=w/ c; see, for example, ReL 6, Sec. 1. 2. Thus, 
the sources we have defined as nonradiating indeed do not 
contribute to the radiated power. 

We turn now to the case of Maxwell's equation, in 
which there arise new features not present in the scalar 
case. We consider electromagnetic fields E and H which 
arise due to a current density J. Again we shall use 
lower case letters for temporal transforms and (an 
over tilde) on lower case letters for full spatial temporal 
transforms. 

We quote the following7 : 

e(r,w)=iw ~+ ~ vv] 'a(r,w), (2.22) 
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h(r, w) = j.J. -IV Xa(r, w). 

Here, j.J. is the magnetic permeability, a(r,w) the 
vector potential, 

(2.23) 

a(r, w) = j.J. J g(R, w)j(r', w) dV', (2.24) 

with gdefined by (2.8), lis the 3x3 dyadic identity 
operator, and vv is the dyadic differential operator 
with elements 

a a 
(vv)w= a -a ' A,v=1,2,3. 

1). r. 
(2.25) 

As above, our interest is in non radiating sources. 
For this purpose, we use (2.24) to rewrite (2.22) as 

e (r , w) = - iw j.J. J g(R, w) [1 + C

2

2 vvJ Hr, w) dV' . 
w (2.26) 

We now introduce the notion of a nonradiating current 
density. 

Definition 2: Let j(r, w) be a current density which is 
nonzero only inside a finite domain [) o' Such a source 
will be called nonradiating if the solution (2.26) is zero 
outside some sphere containing [) o' 

We note that outside of [) 0' e and h are related 
through a curl. Thus, if e is zero, so is h. 

It follows from (2.26) that j is nonradiating if and 
only if the three components of 

~+ :: vv] j 

are nonradiating in the sense of Definition 1. Thus, 
from Lemma 1, we conclude the following: 

Lemma 2: A source j nonzero only inside a finite 
domain [) 0 is non radiating if and only if the integrals 

XYim(e,CP)[I+ ::vv] j(r,w) (2.27) 

are all zero, l=0,1,2, .•. , Iml.oSl. 

Paralleling the discussion of the scalar case, we in
troduce the Fourier transform 

ffl [1+ :: vv] j(r,w)exp(-ik·r)asr 
r;Ea 

[ 
C2 J-= 1- w2 kk j(k,w). 

Here kk is the dyad with components 

(kk)l.. = kl.k., A,v=1,2,3. 

(2.28) 

(2.29) 

We now apply Theorem 1 to each component of the 
transform here. Alternatively, we can expand the ex
ponential according to (2.18) and compare each coeffi
cient to the clm's in (2.27). Either of these methods 
leads to the following conclusion. 

Lemma 3: A source j, nonzero only inside a finite 
domain f) 0' is nonradiating if and only if 

[1- kk] .f(k, ck)=O. (2.30) 
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Here H is the unit dyad formed by dividing by k 2 in 
(2.29). We note that 1- kk is a projector since 

[I-kkF=I-kk, (I-kk)v).=(I-kk\v' (2.31) 

This projector annihilates the "radial" component of a 
vector in k space, 

(2.32) 

while leaving the "angular" part of the vector unchanged. 

Thus, the restriction that j be nonradiating means 
that on the four-dimensional cone, w = ck, j is wholly 
in the k direction. (In particular, it might vanish com
pletely.) The amplitude of this vector on w = ck can be 
expressed in terms of the charge density through the 
continuity equation, 

V .j(r, w) + iwp(r, w) =0. 

Upon applying the Fourier transform we have 

k ·l(k, w) =wp(k, w)/ k. 

(2.33) 

(2.34) 

Now, if (2.30) holds, i. e., if j is non radiating, then 

J (k, ck) = cp(k, ck)k (2.35) 

which explicitly exhibits J as a vector along k when 
w=ck. 

It is interesting to further study the implications of 
(2.34). To this end, we introduce 

(2.36) 

That is, IN is a particular solution of the transformed 
continuity equation. To invert the spatial transform 
here we employ the following: 

(i) multiplication by ik is the transform of V; 

(ii) k- 2 is the transform of (4rrrtl; 

(iii) the transform of a product is the convolution of 
the transforms. Thus, we conclude that 

j = - iw r r r v' p(r', w) dV' 
N 4rr iii R 

Do 

= -iwV [({ p(r',w) dV' 
4rr iJi R ' 

Do 

(2.37) 

That iN is nonradiating may be checked directly by sub
stituting (2.37) into (2.24), observing that a is then the 
gradient of a scalar and hence a in (2.23) is identically 
zero. Then e is zero, as well, outside of f) o' The 
remaining part of 1, 

(2.38) 

may be written as the cross product of k with a vector 
whose radial component is arbitrary. The inverse 
transform of this cross product is a curl of a vector. 
It is this part of j which produces a radiated field, 
except when Lemma 3 is satisfied. 

Again, from Ref. 6, Sec. 1.2, we note that the power 
radiated at frequency w is proportional to {[I - kk) .jy 
integrated over the surface k=w/ c. Thus, as in the 
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FIG.!. 

scalar case, our definition of a nonradiating current 
distribution is consistent with this definition of radiated 
power. 

To recapitulate: For the scalar wave equation we 
have demonstrated a whole class of source distributions 
which are nonradiating. For Maxwell's equations, the 
class of nonradiating sources was even richer since it 
included sources determined from the scalar character
ization and still others which arise as a consequence of 
the specific vector nature of Maxwell's equations. 

3. THE WAVE EQUATION-FAR FIELD 
OBSERVATIONS 

We shall consider here the problem defined by (2.1) 
and (2.2). Our objective is to derive a fundamental 
identity relating the Fourier transform, j(k, w), of the 
source distribution, F, to the phase and range nor
malized far field amplitude, uo, defined in (2.6). We 
shall then discuss some of the implications of this 
identity for inverse source problems. The constraints 
on F imposed below Eq. (2.2) still apply. The signal 
U(r, t) is observed over the entire boundary an in Fig. 
1. (If the observations are not made in the far field, 
aU/an must be observed, as well.) We seek informa
tion about F in terms of the values of U observed on 
an. 

We turn immediately to the time transformed prob
lem (2.4) and (2.5) and the solution representation 
(2.9). We are interested in values of R on oj). As our 
definition of "far field" (r» r') observation, we require 
that oj) and [) 0 are such that the expansion, 

(3.1) 

is valid. We use (3.1) in the phase of the Green's func
tion (2.8) and replace R by r in the amplitude of the 
Green's function. The solution formula (2.9) then 
becomes 

u(r,w)-iff 
[) 
o 

exp{iw/ c[r - r· r')} j(' ) d3 , 

4 r,w r, 
rrr 

r,ca[). 
(3.2) 

A comparison of (2.6) and (3.2) yields the result 

uo(-';-,w) = J J J exp(- iwy' r/ c)j(r',w) asr'. (3.3) 

/)0 

Since j = 0 outside of [) 0' the integral here can be ex
pressed in terms of the spatial temporal transform, 
(2.17), 

(3.4) 

N. Bleistein and J.K. Cohen 197 



                                                                                                                                    

If we identify the direction of observation with the direc
tion of k, 

r-k - , 

then (3.4) yields information about!, 

f(k, ek)=u/k, ek). 

(3.5) 

(3.6) 

By observing everywhere on of), we obtain (3.6) for 
all directions of k. Thus we obtain the Fourier trans
form f (k, w) on the four-dimensional cone 

w=ek. (3.7) 

Unfortunately, (3.6) provides insufficient information 
about the transform of the source distribution to allow 
for the determination of F through Fourier inversion. 
However, it should be noted that (3.7) is the same cone 
on which we found that the transform was zero for 
nonradiatiJ!g sources. Thus, were we to obtain informa
tion about / here elsewhere but on the cone, we would 
be obtaining information about the nonradiating part of 
F from radiated field observations, alone. We note, 
further, thatif!(k,ek)=O, Le., the source is non
radiating, then uo(ii, ek) =0. This is Friedlander's 
result. 

We close this section with a single example in which 
additional information about the source distribution 
allows us to determine it completely. Let us suppose, 
then, that we know a priori that the source is impul
sive, i. e., that F has the form 

(3.8) 

and we wish to determine Fo. In this case, the temporal 
transform defined by (2.17) is given by 

/(r, w) = Fo(r), 

and from (3.6) 

F o(k) = Uo(k, ek), 

which allows us to completely determine Fo by 

Fo(r) = (2~)3 f II exp(ik· r)uo(.~, ek) d
3
k. 

For example, if the actual source was 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

then the actual solution to the reduced problem would be 

u(r, w) =g( I r - ro I, w) -exp(iwr! e - iwr· rJ e)/ 47Tro 
(3013) 

Thus, ideally, we would observe on of), 

uo(r, w) =exp(- iwr· rJ e) 

or 

By inserting this result in (3.11) we obtain 

(3.14) 

Fo(r) = (2
1 

)3 f f f exp[zK· (r - r o)]d3k=6(r - ro) 
7T (3.16) 

which is, indeed, the correct source. 

We remark that a priori knowledge of a multiplicative 
time dependence <l> (t) presents little added difficulty 
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here. In this case, we replace (3.8) by 

F(r, t) = Fo(r)<l> (t), (3.8)' 

and correspondingly, 

/(r, w) = Fo(r)cp(w), 

Fo(k) =uo(k, ek)/ cp(ck), 

(3.9)' 

(3.10)' 

Fo(r) = (2
1 )311/ exp(zK. r)uo(k, ek)/ cp(ck) d3 k. 
7T } (3.11)' 

The fact that the assumption (3.8) leads to a unique 
determination of the source, shows that if, in (2.5), 
the source /(r, w) is replaced by j(r), then the inverse 
problem has a unique solution. This could cause the 
unwary to conclude that the full inverse problem has 
a unique solution, which is, of course, not true. 

4. THE WAVE EQUATION-GENERAL CASE 

In this section we remove the restriction of far field 
observations by use of an inverse source integral equa
tion developed by Bleistein and Bojarski. 1 The basic 
idea is to use two "independent" Green's functions, 
say, the outgoing function (2.8) and the incoming 
Green's function 

g*(R, w) =exp(- iwRI e)1 47TR 

to form the Green's identities 

- u(r, w)y(f) ;r) + J J J g(R,w)/(r', w)dV 
f) 

= J J n' . (uV' g-gV'u)dS', 
of) 

-u(r,w)Y(f);r) + J J J g*(R,w)/(r',w)d3 y 
f) 

= J J n' . (uV' g* - g*V' u)dS' . 
of) 

(4.1) 

(4.2) 

(4.3) 

Here, R = I r - r' I, y(f) ;r) denotes the characteristic 
function of f), L e. , 

y(D;r)= {l rF. f), 
o reif), 

(4.4) 

~, is the unit outward normal to f) and V' denotes the 
gradient in the prime coordinates (integration variables). 
We note that 

i . I iw. (wR\ 
g(R,w)-g*(R,w)= 27TR sm(wR c)= 27Te Jo \c)' 

(4.5) 

with jo the spherical Bessel function of order zeroo We 
subtract (4.3) from (4.2) to obtain the integral equation 

J J J jo(wRI e)/(r', w)~r' = @(r,w), R= I r - r' I 

with 

@(r,w)= f f n' • Iu(r', w )V'jo(wRI e) 
a f) 

- jo(wRI c)V'u(r', w») dS'. 
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Here, the right side is a function of the observed values 
of u and auf an on a/). Thus, this is a Fredholm integral 
equation of the first kind for the unknown source f. 

As in the previous sections, we assume that f vanishes 
outside a domain j) 0 c/). Thus, on the left side, we 
replace the domain of integration by all of 3-space. We 
then take the spatial Fourier transform (2.4) in (4.6), 
taking advantage of the convolution form on both sides of 
the equation to obtain 

k(wk/ clICk, w) = - 1o(wk/ c) iaD I exp(- ik· r')n' 

x[iku(r',w)+V'u(r',w)]dS'. (4.8) 

At this point, it appears that we can solve for the spatial 
temporal transform of F by cancelling the common fac
tor 10' Unfortunately, this is not possible since 

"" wk _ 2rr2~ "~k w) 
.10 c -~v\-C (4.9) 

which is zero, except on the four-dimensional cone, 
w = ck. Once again, we can only determine 1(k, w) on 
this cone as 

j(k, ck) = -fa D J exp(- ik· r')n' ·llku(r', ck) + V'u(r', ck)] dS' 

(4010) 

Thus, we again obtain an equation of the type (3.6), 
except that the right side is a more complicated function 
of k. To recapture (3.6) from this result, one must use 
the far field approximation (2.6) and then calculate the 
integral here by two-dimensional stationary phase. 

Let us return now to the example of Sec. 3 in which 
we assume that F is impulsive and given by (308). Then 
in place of (3.10) we find that 

Fo(k) = -fa D J exp(- lk· r')n' ·llku(r', ck) + v'u(r', ck)] dS' 

(4.11) 

and Fo(r) is given by the inverse transform of this func
tion. One can further carry out the calculations in the 
special case (3.12) to reproduce the source by invert
ing the transform here when u is given by (3013). 

Again, our comment at the end of the previous sec
tion about nonuniqueness in general despite uniqueness 
in the specific example should be noted. 

5. INVERSE SOURCE PROBLEMS FOR 
MAXWelL'S EQUATIONS 

We shall consider here the inverse source problem 
for Maxwell's equations. Our discussion shall parallel 
that of Secs. 2 and 3. Our objective is to derive the 
analog of the identity (3.6) for the case of far field ob
servations, then to derive an exact integral equation 
such as (4.6) for this vector case and finally to derive 
the extension of (4.10) to this case. 

We assume that (time-transformed) fields e and h 
arise due to a current distribution j confined to /)0 of 
Fig. 1 and that these fields are observed onf). The 
fields are outgoing, which we characterize, in analogy 
with (2.6) by 
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exp(iwr/ c) A 

e(r,w)- 4 eo(r,w), 
rrr 

(5.1) 

h( ) - exp{iwr/ c) h ( ) r, w 4rrr 0 r, w , r- oo • (5.2) 

We shall first consider the case of far field observa
tions. In analogy with (2.9) we begin with the solution 
formula (2.22). 

We use the same assumptions and criteria for far 
field here as were used in Sec. 3, thereby obtaining in 
analogy with (3.2) 

( ) iw /.L exp(iwr/ cl (I A A) 
e r, w - 4rrr - rr 

x f f f exp( - iwr· r' !C)j(r' ,w) tfr' . (5.3) 

Here, rr is the three-dimensional dyadic formed from 
the components of r. By comparing (5.1) and (5.3) we 
conclude that 

(5.4) 

with J the fourfold Fourier transform of j with each 
component transformed as in (2.4). This result is the 
analog of (3.4). If, again, we identity rwith k (3.5), 
then in analogy with (3.6), we obtain 

(5.5) 

Thus, we obtain the nonradial portion, J - k(k ·1\ of the 
transform of 1 only on the four-dimensional cone, w 
= ck. We have seen why this is to be expected from the 
point of view of the direct problem. We further note 
here that the presence of the projector 1- rr in (5.4) 
and, consequently, 1- kk in (5.5) reflects the property 
that eo is transverse to the direction of propagation. 

In order to parallel the discussion of Sec. 4, we be
gin from a vector generalization of (4.2) for Maxwell's 
equations. To do so, we introduce the Green's dyadic 

(G(R,W)=~+ ;:VV)g(R,w), R=lr-r'l. (5.6) 

The scalar Green's function g is defined in (2.8) and 
the dyadic operator appearing here is defined below 
(2.24). Similarly, 

(G*(R,W)=~+ ;: VV)g*(R,W), (5.7) 

with * denoting complex conjugate. 

The Green's identity corresponding to (4.2) is7 

e(r,w)y(f); r) - iwJ.l. J J J (G(R,w) ·j(r', w)tfr' 
D =fa 1'nn' .{<&X(V'Xe)-ex(V'x(G)}tfr'. (5.8) 

The function y(f); r) is defined in (4.4). If <& is replaced 
by <&* here, the equation remains valid, as well. The 
difference of these two equations leads to the analog of 
(4.6) and (4.7), namely 

-iwJ.l. ///[V+ ;: V/VJj~W:)] 'j(r',w)d3r'=9(r,w), 

D 
(5.9) 
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o(r,w)=//n"{[V+ ~: v,v) ·jotR
] x(V'xe) 

~:XV'X[(I+ ~: V'V~ .jO(W:]} d3r'. (5.10) 

Integration by parts in (5.9) yields the followingalterna
tive form: 

. j(r', w) ~r' =O(r, w). 

D (5.11) 

Equation (5.9) or (5.11), along with (5.10) provides the 
generalization of (4.6) and (4.7) to the inverse source 
problem for Maxwell's equations. As in Sec. 4, these 
are Fredholm integral equations of the first kind. By 
taking the spatial Fourier transform in either equation, 
we obtain the generalization of (4.10), 

- iekJ.J.(I - kk)J(k, ek) 

= faD f exp(- ik· r')n" {(I - kk)X lv xe(r', ek)] 

+ e(r', ek) x lik x (I - kk)]} dS'. (5.12) 

Thus, on the four-dimensional cone w = ek, we obtain 
an expression for that part of 1 which gives rise to the 
radiated field. This type of result is consistent with our 
analysis of the direct problem in Sec. 2. 

We close this section with a simple example in which 
a unique solution is obtained for j despite the inherent 
nonuniqueness in (5.17). Thus, let us suppose that the 
original time dependent source is impulsive and re
stricted to being horizontal. Therefore, 

(5.13) 

In this case, we would seek a solution of (5.12) of the 
form 

(5. 14) 

In addition, from (5.12), l(k) must satisfy the equation 

(I-kk)·l(k)=(I-kk)·jo(k). (5.15) 

This equation has as a particular solution 

(I - kk) ·jo(k), 

and as a general solution 

1 (k) = (I - kk) . Jo(k) + </I(k)k (5.16) 

with </I(k) an arbitrary scalar function of k. We now use 
the constraint in (5.14) to conclude that 

Thus we can solve for </I(k) and conclude that, indeed, 

(5.18) 

We note that we have used the fact that the source was 
impulsive-information of the type used in the scalar 
problem-and, in addition, we used information about 
the vector nature of the source distribution. Together, 
this added information sufficed for the unique deter
mination ofl and hence J(r, t). As in Sec. 4, we could 
as well solve the problem if oCt) were replaced by a 
known time dependence <p(t). 
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6. NONUNIQUENESS IN INVERSE SOURCE PROBLEMS 

We shall discuss here, the integral equations (4.6) 
and (5.11). We shall show that both integral operators 
have nontrivial null spaces, i. e., that in both cases the 
homogeneous equation has nontrivial solutions. We shall 
also show that, in fact, the null spaces are the sets of 
nonradiating sources defined in Sec. 2 . 

We begin by defining the null space for the scalar 
problem. 

Definition 3: The source function 

f(r,w)=j F(r,t)exp(iwt)dt (6.1) 

is said to be in the null space N(a) if f vanishes for 
r> a and 

f f f jo(wR/e)/(r', w) d3r' =0, R= Ir-r'l· (6.2) 
r'(a 

We note that jo(wR/ e) has the spherical harmonic 
expansion 

. (WR) -4 ~ ~ . (wr). (wr') Y (8 ,J.,)Y* (8' ,J.,') )0\ e - 1Tt'o~IJI\e JI\ e 1m ,,/, 1m ,'/' " 

(6.3) 

By comparing (6.3) and (2.10) we see that jo and g have 
the same r' dependence at each order I, m. Thus we 
conclude the following. 

Lemma 4: f(r, w) is non radiating and vanishes outside 
r=a if and only iffis in N(a). 

Proof: Let f vanish outside r=a. Substitute (6.3) 
into (6.2) and conclude that such a function f is in N(a) 
if and only if the coefficients elm defined by (2.14) are 
all zero. However, the vanishing of the se coefficients is 
exactly the requirement for a source which vanishes 
outside r = a to be nonradiating. This completes the 
proof. 

We conclude from this that the nonuniqueness in the 
inverse source problem is a direct consequence of the 
fact that the direct problem admits nonradiating 
sources. Thus, if this "defect" is to be overcome, it 
must be done by finding additional information about the 
source over and above observations of the radiated 
field. 

Let us now turn to the question of eigenfunctions. 
Thus, we consider the equation 

f f }jo(wR/e)</I(r',w)d3r'=A<jJ(r,w), r""a (6.4) 
r=5a 

with </! '= 0 for r> a. Since jo satisfies the homogeneous 
Helmholtz equation, we conclude that 

(6.5) 

Here A = ° yields the null space N(a) while for A * 0 we 
find that the normalized eigenfunctions are 

and 

</Ilm(r, w) =Ni1jl(wr! e)Ylm (8, cjJ)H(a - r), 

[=0,1,"', Iml'-S[, 
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Here, H denotes the unit step function and 

~ = Jo
a 
j~(wr/ c)r2 dr. (6.8) 

The eigenvalues are seen to be positive. Actually, the 
integral in (6.8) is given in Ref. 8. The eigenvalues are 
then given by 

AI • m = a2

3 

{[jl(a~)12 _jl-l(a~) jl+l(a~)}, 
l=0,1,2,"', Iml";l. (6.9) 

Furthermore, for fixed frequency and increasing 1 we 
find that 

rra
3 

(eaw) 21 r, (I)J (1) - 413 2cl Ll + 0 T = 0 l21+3 , (6,10) 

Therefore, the eigenvalues decrease rapidly to zero, 
Thus, the inverse problem is confirmed to be both ill
posed and ill-conditioned, as is well known. 

Since N(a) is not empty lcf. (2.15)], the eigenfunc
tions are not complete. Indeed, for any function J(r, w) 
which vanishes outside r= a, if we subtract its projec
tion on the eigenfunctions, we obtain a function in the 
null space. We denote the projection on the null space 
by 

~ I 

poJ=J- L: L: d'm</!Im(r,w). (6.11) 
1=0 m=-I 

Here 

d,m=j j j J(r,w)l/Jim(r,w)~r=Nilclm' 

l=0,1,2,"', Imi";l, (6.12) 

with the clm's defined by (2.12) and (2,14). In fact, the 
source (2.15) is just the function P 06(r). 

The analogous results for the electromagnetic case 
follow almost immediately, because the kernel of the 
integral operator in (5.11) is exactly the same as it was 
for the scalar case. Thus we state the following with
out proof: 

Lemma 5: Let the current density j be confined to a 
finite domainLJ 0 cL). Then the null space for the in
tegral equation (5. 11) is exactly the class of nonradiat
ing sources. 

7. CONCLUDING REMARKS 

We have shown that our formulations of the inverse 
source problem in acoustics or electromagnetics admit 
nonunique solutions. When this nonuniqueness is 
characterized by a null space of source functions, that 
collection of sources turned out to be exactly the set of 
"non radiating" sources for the corresponding direct 
problem. Thus, we concluded that unique determination 
of a source distribution requires other information in 
addition to observations of the radiated field. 

One example of such "additional information" was 
provided for the scalar problem, namely, the case of a 
known multiplicative time dependence. (In the vector 
problem, additional information of the vector nature of 
the source was required, as well. ) Research is now in 
progress on a systematic investigation of such" addi
tional information." We cite some preliminary results, 
below. 

If the radial dependence can be characterized by a 
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known multiplicative factor in the source, then explicit 
solutions of the scalar problem can again be determined 
much as in the case of known multiplicative time 
dependence. 

If the (r, t) dependence can be split off as a known 
multiplicative factor, this will suffice for unique deter
mination of the source. 

If the source is known to have no component in the 
null space, then, in fact, it is exactly given by its 
eigenfunction expansion. 

We may alternatively take the point of view that we 
seek only an "equivalent" source. That is, for a given 
radiated field, we might seek a source with a pre
scribed temporal dependence. For example, (3.10) or 
(4.11) are expressions for Fo(k) when Fo(x) is an 
equivalent source with impulsive time dependence no 
matter what the actual source distribution happens to be. 

Finally, we mention the synthesis problem. Here, we 
seek a source distribution which is to provide a pre
scribed radiated field. In the scalar problem, let us 
denote the unknown spatial array by Fo(r) and the 
response to a pure frequency, v, by U(r, v). That is, 
corresponding to the source distribution, 

Fo(r) exp(- illt), 

the wave equation (2.5) has solution 

U(r, v) exp(- ivt). 

If U(r, v) were given for all v, then (3.10) or (4.10) 
provides a solution for Fo(k) when u is replaced by the 
function U appearing here. 

The solution presented here avoids many real and 
practical issues. Typically, one is not given the radiat
ed field for all frequencies. Indeed, one is more likely 
to be given the radiated power denSity in a limited band 
width, rather than the field itself. Furthermore, this 
solution has a nonradiating component which we could 
extract via use of the projection (6.9). Presumably, we 
might use the added freedom of nonradiating sources to 
generate sources satisfying other constraints, such as 
being confined as nearly as possible to a region in 
space, such as a horn or a surface. Research on this 
approach to synthesis is presently in progress. 

*This work partially supported by the Office of Naval 
Research. 
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The subalgebras of the similitude algebra have previously been classified into conjugacy classes; in this 
article these classes are classified into isomorphism classes. For each conjugacy class of subalgebras, the 
invariants are also calculated. All the results are summarized in tables. 

1. INTRODUCTION 

A general method for obtaining the subalgebras of a 
given Lie algebra was given in Ref. 1. The method con
sists of an iterative procedure for reducing the problem 
of finding the subalgebras of L with nontrivial ideal N, 
to that of finding the subalgebras of the ideal Nand 
those of the factor algebra. If the algebra L is simple, 
then matrix realizations of the algebra are used to ob
tain its subalgebras. In a later paper, 2 this method was 
used to obtain all the subalgebras of the similitude al
gebra (the semidirect product of the Poincare algebra 
and the dilatation operator). 

The subalgebras were classified into conjugacy 
classes under the connected component of the similitude 
group, and a representative algebra for each class was 
also listed. Two algebras Land L' are conjugate under 
a group G if 3g E G such that KLg-l = L'. The virtue of 
such a classification is clarified by considering the 
physical interpretation of such a class. 

Identifying the elements of the subalgebras with the 
infinitesimal transformations on space-time (i. e. , 
rotations, boosts, translations, and etc.), the state
ment that two algebras are conjugate is equivalent to 
the statement that the two algebras describe the same 
set of transformations (or observables) as viewed from 
different coordinate systems, while, unconjugate al
gebras describe physically distinct operations; for ex
ample, the algebra of rotations is physically distinct 
from the algebra of translations. 

Below, the algebras are reclassified into isomorphism 
classes. Each isomorphism class corresponds to an 
orbit of GL(n,R) acting on the subalgebras of dimension 
n. In terms of the structure constants, the statement 
can be rewritten in a more explicit form. Two algebras 
Land L' of dimension n and structure constants c~J 
c;~ respectively, are isomorphic if 3KE GL(n,R) such 
that 

Since conjugate algebras have the same structure con
stants, they are trivially isomorphic, and so only the 
conjugate classes of subalgebras are classified into 
isomorphism classes. 

The main interest in this type of classification rests 
on the fact that through isomorphism all algebraic 
properties obtained for one algebra are immediately 
transferable to all algebras within the same class. Fur
ther, a knowledge of a suitable choice of structure con
stant within the orbit may greatly reduce the difficulties 
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and complications arising in the actual calculation of a 
particular result. 

For each representative algebra, a basis for the set 
of invariants is obtained. Here, by invariant is under
stood a function of the elements of the algebra such that 
the function commutes with all the elements of the al
gebra. The function is assumed to be at least first dif
ferentiable in all variables, so that any invariant with 
a finite range of eigenvalues is ignored, like the sign of 
the energy in the Poincare algebra. 

This paper constitutes a sequel to a paper by Patera 
et al3 in which the conjugacy classes of the subalgebras 
of the Poincare algebra were classified into isomor
phism classes, and the respective invariants, for each 
representative of a conjugacy class, were calculated. 
Since some of the conjugacy classes of the Poincare al
gebra are also conjugacy classes of the similitude al
gebra, parts of their results are contained in this ar
ticle, providing an independent check for these results. 

In Sec. 2, the general method employed in classifying 
the conjugacy classes of subalgebras into isomorphism 
classes, and in calculating the invariants is discussed. 
The calculation of the invariants and the role which these 
might play in labeling the irreps of an arbitrary Lie al
gebra has been the subj ect of considerable investigation 
recently.3,4,5,6 From Schur'S lemma, it follows, that 
within the irreps, the invariants are of the form AI 
where A E C and I is the identity operator for the rep
resentation; showing that A is distinct within the different 
irreps would lead to applications analogous to those of 
the Casimir operators for these (generalized) invariants. 
Two special types of invariants, the Casimir operators, 
and the rational invariants were systematically treated 
by Abellanos et al. 4 Rational invariants are elements 
of the quotient field of the enveloping algebra. In other 
words, they are ratios of homogeneous polynomials on 
the algebra. Considerations on the more general in
variants along with additional references can be found 
in the above mentioned paper by Patera el ai3

; also a 
short treatment will appear in the conclusion. For a 
discussion of operator caculus see Ref. 7. 

Section 3, containing the main results, consists of a 
list of representative algebras for the conjugacy classes 
of the similitude algebra and their respective invariants. 
The algebras are organized first by dimension and then 
for each dimenSion, they are grouped into isomorphism 
classes. Each isomorphism class is designated by a 
notation which refers to a standard basis that char
acterizes that class, whenever such a basis exists. 
This notation is consistent with the one used by Patera, 5 
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who listed the standard basis of the Lie algebra char
acterizing each isomorphis m class. Comments on the 
classes and the invariants also appear in Sec. 3. Sec
tion 4 is reserved for the conclusion. 

2. METHODS 

All the conjugacy classes of the subalgebras of the 
similitude algebra, listed in Ref. 2, are reorganized 
first by dimension and then for each class the invari
ants are determined. A knowledge of the invariants, 
often, aids the mapping of conjugacy classes into iso
morphism classes. 

An algorithm for obtaining the invariants is achieved 
by reducing the problem to that of solving a system of 
linear first order partial differential equations. This 
method has been discussed in detail in the 
literature. 4,5,6 

In one paper, 5 for each of the isomorphism classes 
of dimension n <;; 5, the method was used to obtain the 
basis for the set of its invariants. (However, here, for 
each representative algebra the invariants were inde
pendently determined.) The method consists in identify
ing the adjoint representation of a Lie algebra with a 
set of c-number first order linear differential operators. 
That is, let L be an n-dimenSional Lie algebra, then 

'tI X" X J E L, let ad(X,)XJ == [x, ,XJ] = ClJXk 

and replace 
a 

adX, - XkC,~ -a x
J 

where x, are c-numbers. The equation for the invari
ant is 

[Xp F(Xl>X2"" ,Xn)]=O 'tI X, E L 

and reduces to 

a 
XkC,kJ -a-F(xl>x2"",xn)=O, i=1,2,3, .•• ,n. xJ 

(1) 

The invariant thus formed must then be converted from 
a function of c-number variables to an operator func
tion. Simple identification of X, ++ x, will be sufficient, 
in the senSe that the resulting function will indeed be 
an operator invariant, i.e., satisfy (1), only if all the 
x, appearing in the function mutually commute. In the 
case where the function is a homogeneous polynomial 
(a Casimir operator) it is well known that the invariant 
operator must be fully symmetrized in all its variables. 
The reason being, that if u and v are polynomials in 
the x, and 

k au [] xkc'J -a- =V, then X"U =V x
J 

(2) 

provided U and V are the polynomials with the same 
coefficients as u and v and are fully symmetrized in the 
corresponding X, E L. 

All the invariants found for these sub algebras are of 
the form 

m 
exp(Um+r!Um) n U~', ,=1 

where the U/s are relatively prime homogeneous poly
nomials in the x,, The exponents as well as the coef-
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ficients may be complex numbers. Then replaCing Xi 

by X in each polynomial and symmetrizing each in
dividual polynomial will lead to an operator invariant. 
The proof essentially follows from (2), as for Casimir 
operators, and is based on the assumption that [[Xi' UJ 1, 
U ] = 0 'tI X, EO L, for all polynomials UJ featured in the 
i~variant. This assumption was indeed satisfied for all 
invariants found here and elsewhere. 3,5 It can be shown 
that for semisimple and nilpotent algebras, the Casimir 
operators are sufficient to define a basis for the set of 
all invariants. Further, the number of independent in
variants for an algebra of dimension n is nmod(2). 

As was mentioned earlier, in order to classify the 
conjugacy classes into isomorphism classes, the rep
resentative subalgebras, for each conjugacy class, are 
first organized by dimension. Then for each dimension 
they are further reorganized by the dimension of the 
derived algebra; this last step can be repeated as many 
times as is required. 

All isomorphism clasSes for real Lie algebras of 
dimension n <;; 5 have been listed by MubarakzyanovB and 
later reproduced in a more acceSSible paper. 5 For al
gebras of dimension <;; 5, the claSSification is reduced 
to identifying each representative subalgebra with an 
abstract representative of the isomorphism classes 
listed in Ref. 5. The classes are denoter! by A~,l~""", 
where n identifies the dimension of the subalgebra, m is 
used to index the different isomorphism classes for the 
same dimension, and the parameters a 1 "'an are used 
to select a particular class out of an infinite set of iso
morphism classes. The structure constants are func
tions of the parameters (JIl"'(JIi' For example, Ats 
with standard basis Cll c2 , c3 such that [ell c21 = Cll 

[c2 , c3 ] = hC2 with -1 <;; h <;; 1 is such an infinite set of iso
morphism classes. 

Since no complete classification of isomorphism 
classes for real Lie algebras of dim ?- 6 exists, 9 a 
slightly modified approach is used. The algebras are 
first reordered as before, and then for each set con
sisting of sayan algebra of dimension n with a derived 
algebra of dimension i and second derived algebra of 
dimension i' and etc., the invariants are used to group 
the algebra into possible isomorphism classes. At this 
point, it often is evident which algebras are not iso
morphic. Then from the so chosen candidates for a 
specific class (the number of candidates is not large), 
their largest Abelian idealS are identified and by com
paring the respective factor algebras, the algebras are 
classified into isomorphism classes. As a further test, 
the explicit transformation, which transforms the 
structure constants of one algebra into those of the other 
algebras within the class, is constructed. For the 
similitude subalgebras, isomorphism classes of dim 
'" 6 are found to contain at most two sets of conjugacy 
classes. 

3. ISOMORPHISM CLASSES AND INVARIANTS 
The usual basis for the similitude algebra is used, 

with the L;'s representing the rotation generators, the 
K;'s representing the boost generators, D representing 
the dilatation generator, and the P ,':s representing the 
space-time translations. Then the commutation rela
tions are 
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[LpLjJ =€tJkLk' [Ki ,KjJ= -EiJkLk • 

[Lp P j ] = EjjkPk, [L i , K j ] =€jJkKk' 

[Ki 'Pj] = OjjPO [Ki , po] =Pj , 

[D,P.l=2Pu' [LpPo]=O, 

[D,Lj]=O, [D,Kj]=O, 

i,j,k, =1,2,3. 

The invariants of the Poincare algebra Sl,l are well 
known, 

m 2 =~ -P~ -P~ -P~, W = W"W", 

where W,. =E"v5~Mv5P~ is the Pauli-Lubanski spin op
erator with MOl =KI and MiJ =€ IJkLk' while the invariant 
of the similitude algebra S1 3 consists of the ratio of 
these two operators which ;educes to the spin operator 
in the frame with the eigenvalues of PI = 0 (the rest 
frame). 

The results of the classification and the basis for the 
invariants are summarized in Tables I-IX. The nota
tion Sid refers to the conjugacy classes as found in ReL 
2. When listing the elements of a subalgebra, the semi
colon is used to indicate that all elements to its right 
belong to the derived algebra. 

All one-dimensional subalgebras are isomorphic and 
appear in Table 1. The n-dimensional sub algebras ap
pear in Table n, except for those of dimension 10 and 
11 which are listed in Table IX. 

If an infinite set of isomorphism classes contains 
an infinite set of conjugacy classes, then the param
eters of the set of isomorphism classes are functions 
of the parameters of the set of conjugacy classes 0 The 
function need not be one to one, and such a case arises 
in classifying the set St4; for each c, the corresponding 
class of S;,4 is associated with an element of A~,7 such 
that P = tanc. The range of c is 0 < c < 1T, C * 1T/2 which 
implies that - 00 < tanc < 00, and tanc * 0; however, the 
range of the parameter P is P> O. This suggests that 
classes with I tanc I equal are isomorphic. This can be 
verified by a slight rearrangement of the basis of the 

TABLE I. One-dimensional subalgebras. 

Class Notation 

5 11 ,6 

512,10 

512,20 

512;21 

5 12 ,22 

513;9 

5 13 ,15 

514,9 

514 ,20 

5 14 ,21 

S15;8 

S15" 9 

S15~ 10 

515~ 22 

S15:41 

S15,42 

Generators 

L 3 -tancK3; 

L3; 
4L 3+PO+P3 ; 

2L 3+PO; 

2L 3 -P3 ; 

K3; 
2K3-P2 ; 

L 2+K1 ; 

2L 2+2K1-Po-P3 ; 

L 2+K1 -P2 ; 

P O-P3; 
Po; 
P 3; 

D· , 
D+ 2a cosCL3 - 2a sincK3; 
D-L2- K U 
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representative algebra of S~.4' In this case, as for all 
those of dim ~ 5, the range of the parameters for the 
set of isomorphism classes has been defined. B For the 
higher dimensional case, even though the infinite sets 
of isomorphism classes have not been constructed yet, 
the problem can be treated analogously. For example, 
consider SU/19 with dl + b2 * 0 from Table VII; since 
the invariant has the exponent 1 + b, it follows that al
gebras with distinct b's are not isomorphic. However, 
S~O~19 is isomorphic to Sig:~9; this can be seen by inter
changing P2 with P 1 and L2 + K1 with L1 - K2 in the or
dered basis of S10~19' All other cases can be approached 
in a similar manner. 

4. CONCLUSION 
As was mentioned earlier, the greatest utility of such 

a classification of subalgebras lies in its capacity to 
remove redundancies in computations. The availability 
of a suitable choice of structure constants for a partic
ular class can reduce the complexities in a particular 
calculation> 

It is expected that the invariants obtained here will 
provide a useful tool in the representation theory of these 
algebras, much like the Casimir operators do, in the 
case of semisimple Lie algebras. The extension of 
special function theory, via group theory, in order to 
include these invariants should produce new and useful 
results. 

On the physical aspect, the eight-dimensional algebra 
S2,l is importantly contained in the "infinite momentum 
frame"lO,ll calculations, in Dirac's "front frame" 
dynamics ,12 and in the investigations of "Galilean sub~ 
dynamics 0 "13,14 One of the invariants of this algebra is 

(3) 

and because of its somewhat extensive use in physics, 
it has already been named the lightlike helicity or the 
null-plane helicity .15,16 The name is appropriate, since 
for zero mass particles with discrete spin, Lz + K1 and 
L1 - K2 are both zero and so (3) reduces to L30 The 
similitude algebra is another example of an algebra with 
nonpolynomial invariant which has reached prominence 
in physical applications. 17 

Range of parameters Invariants 

O<C<rr, c"'rr/2 generator 
" 
" 
" 

" 
" 
" 
" 
" 
" 
" 

" 
O:SC<rr,a>O " 

" 
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Further investigations along these lines should reveal the relevant and operational properties of these more 
general invariants, despite their present rather precarious mathematical status, 
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TABLE II. Two-dimensional subalgebras. 

Class Notation 

S9.6 

S10.5 

S10,13 

S11.12 

S11.18 

S12.1 

S12 8 

S12' 9 

SI2:11 

S12.18 

S12.19 

S12.32 

S12.41 

S12.42 

S12.46 

S13.8 

S13,11 

S13.24 

S13.30 
S141 

SI/8 

S14:17 

S14.18 

S14.19 

S14.30 

S14.51 

S15.5 

S15.6 

S15 1 

S15:35 

S8 9 

S8:17 
5 11 5 
5 13 '1 

5 13: 13 
5 14•49 
5 14 •50 
5 14,62 

S14,63 

S15,19 

S15.20 

S15.21 

5 15,35 

S15.36 

SI5.31 

515• 38 

S15.39 

S15.40 

Generators 

L 3• K 3 ; 

L 2+K1• L 1-K2; 
L 1-K2+Pz, L 2+K1 ; 

D. coscL 3-sincK2; 
D+ZaL3. coscL 3-sincK3; 
L 3 • P O-P3 ; 

L 3 • P 3 ; 

L 3• Po; 
4L 3+PO+P2 • P O-P3; 
ZL 3+PO• P 3; 
ZL 3 -P3• Po; 
D. L 3 ; 

D- ZaK3• L3; 
ZD-4K3+PO+P3• L3; 
ZD-4K3+x(PO+P;J.4L3+(PO+P3); 
K 3 • P 2 ; 

2K3 -PZ• PI; 
D. K 3; 

D+ZaL 3• K3; 
L 2+K1 • P O-P3 ; 

L z+K1• P z; 
ZL z+2K1-PO-P3• P O-P3; 
L 2+K1 -Pz, P O-P3; 
2L 2+ 2K1-PO- P 3. P 2; 

D. L 2+K1 ; 

D+L 1-Kz• L 2+Kn 
P O-P3• P 2; 

po. P 3 ; 

P lo P 2; 

D+ 2a(coscL3 - sincK3), P O-P3 

K 3; L2+Kl 
2K3-P2: L2+Kl 
coscL 3 -sincK3; P O-P3 
K 3; P O-P3 
2K3 -PZ; P O-P3 
D-ZaK3; L2+Kl 
2D+4K3+PO-P3; L2+Kl 
D- K 3; 2L2+2KI-Po-P3 
D-2K3 +b(L 1 -K2+P1); L z+K1 -PZ 
D; P O-P3 

D; Po 
D; P 3 
D+ Za(coscL 3 - sincK3); P O-P3 

D-Lz-K1 ; P O-P3 
D+2aL 3 ; Po 
D+2aL 3; P 3 
D-2aK1;P3 
D+ 2L3+ 2KU P 3 

TABLE III. Three-dimensional subalgebras. 

Class 

205 

Notation Generators 

D. L 3 , K 3 ; 

L2+KlI L 1-Kz• P O-P3; 
L z+K1• L 1-Kz +Pz, P O-P3; 
D, L 2+Kj , L 1-Kz; 

J. Math. Phys., Vol. 18, No.2, February 1977 

Range of parameters Invariants 

O<c<7I". c"'71"/2 

both generators 

" 
" 
" 

" a>O " 

a>O 

a>O 

a=l. c=371"/2 

a"'O 

a>O,a"'l 
o :s c < 271". c '" 371"/2 

a>O 
a>O 
a>O 

Range of 
parameters Invariants 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 

" 
" 
" 
" 

" 
" 
" 

" 
If 

If 

none 
If 

If 

If 

" 
If 

If 

If 

" 
If 

" 
If 

If 

" 
" 
" 
" 

all generators 
" 
If 
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TABLE III. (Continued). 

Range of 
Class Notation Generators parameters Invariants 

SIZ.5 L 3, Po, P 3; all generators 
S12,39 D-2aK3• L 3 • P O-P3; a=-1 ff 

S13,6 K 3, PI, P z; 
S14,4 Lz+KI , P O-P3• P z; 
SI4.1, 2L z+2KI -PO-P3 , po-ps. P,; 

S15" P O-P3 , pz. PI; ff 

S15.3 Plo Pz, P 3; 11 

S15,4 po. Pj, P z ; 

AIEBAz S8,8 (P,)EB(K3 ; Lz+Kj ) P z 
Sa,26 (D) EB(K3 ; Lz+KI) D 
S9,5 (L3) EB(K3; P o-P3J Ls 
Sl1.11 (D - 2 coteL 3 + 2Ks) EB(coteL s - Ks; Po - P 3) O<e<7r. e"'7r/2 D- 2 coteL 3 + 2K3 
SI1,17 (D + 2(a - cote)L3 + 2K3) a"'O 

EB (cotcL 3 -K3; Po -P3) O<e<7r, e"'7r/2 D - 2(a cote) L3 + 2K3 
SIZ,Z9 (L 3) El:J(D;Po-P3) L3 
SI2,30 (L 3) EB(D, P) L3 
S12,31 (Ls) EB(D; Pol L3 
SIZ,39 (L 3) El:J(D - 2aK3; Po - P 3) a'" 0,-1 L3 
SIZ,40 (Ls) EB(2D -4K3+PO+P3; P O-P3) L3 
S12,45 (4L 3 + Po+ P 3) EB(2D - 4Ks +x[Po + PsI ;Po - P 3) _Ci!)<X<OO 4L 3 +PO+P3 
SI3,5 (Pz) EB(K3; Po -P3) P z 
SI3,l1 (PI) Eb(2K3-PZ; Po-Pz) PI 
SI3,Z2 (D + 2K3) EB(D - 2K3 ; Po - P s) D+ 2K3 

SI3,23 (K3) El:J(D; P z) K3 
SI3,Z9 (K3) EB(D+ 2aL3; P O-P3) a"'O K3 
S14, Z8 (Lz+KI) EB(D; P O-P3) Lz+KI 
SI4,Z9 (Lz+KI) El:J(D; P 2) Lz+KI 
S14,45 (P O-P3) w(D - 2aK3 ; Lz+KI) a=-1 P O-P3 
SI4,46 (L z +KI) EB(D+LI-Kz; P o-P3J L2+KI 
SI5,31 (Po- P s) w(D - 2aK3; P z) a=-l P O-P3 
SI5,33 (PO-P3) E:B(D+ 2a[coseLs - sineK3J; P O-P3) a=l, e=7r/2 P O-P3 

A 3,I S 10,11 Lz+KI-PZ, LI-Kz+bPz-PI ; P O-P3 b"'O P O-P3 

SIO,IZ Lz+KI-PZ, LI-Kz-PI ; P O-P3 " 
Sj4.5 Lz+KI , Pj; P O-P3 

ff 

SI4,6 L,+KI. P Z-bPI,PO-P3 b"'O " 
S14,13 2L z+2Kj -PO-P3, PI; P O-P3 

ff 

S14,14 L,+KI-PZ, PI; P O-P3 
ff 

SI4,15 2L 2+2KI -PO-P3• PZ-bPj ; P O-P3 b=O ff 

S14.16 L,+Kj-Pz, Pz-bPj ; P O-P3 b"'O " 
A 3,2 Sa.j5 2K3+PI ; Lz+KI , P O-P3 (Po-P3J exp[(Lz+KI)/(P3-PolJ 

S8,I6 2K3 -Pz+bP!; L 2+Kto P O-P3 b"'O (Po-Ps) exp[(Lz+KI)/b(P3 -Poll 

SI5,32 D-cosc(Lz+K j ) +sinc(L j -K2); P z, P O-P3 O<c<7r (Po - P 3) exp(Pz/ (P3 - Po) I 

A s,3 S7,5 K3; Lz+K j , Lj-KZ (L j -Kz)/(Lz + K I) 

Sa,7 K 3 ;Lz+Kj, P O-P3 (L z+Kj)/(Po-P3J 

S8,I4 2Ks-Pz; Lz+KI , P O-P3 " 
S10,Z4 D+2aL s-2bK3 ; Lz+Kj, L 1-K2 a=O, b"'O (L z+KI)/(L1-Kz) 

SIO,25 2DI 4aL 3 , 4K3 +Po - P,j; L 2+ K I , LI -K2 a=O " 
SlO,3Z D-2K3; L 2 +Kj , L I -K2+PZ (Ll-K2+PZ)/(Lz+Kl) 

Sj5,16 D; P z, P O-P3 (Po-PNPz 
SI5,I7 D; Po, P 3 (Po-PN(Po+P3) 

SI5,I8 D; PI> P z PtiPz 
Sj5,32 D- cosc(L 2+Kj) + sine(LI-Kz); P z, P O-P3 e~O (PO-P3J/P2 

A 3,4 SI1,4 La-taneK3; Po, P 3 O<e<7r. e"'7r/2 P5-P~ 
SIS,4 Ks; Po, P a " 
S13,I2 2K3 - P 2; Po, P 3 
Sj4,48 2D+4K3+PO-P3; Lz+Kj • P 2 P Z(L2+Kj ) 

A~,5 
(L z +K1) I+a/ (Po -Ps)G h=a/(l+a) S14,45 D- 2aK3; L 2+Kj, P O-P1 a'" 0, -1 

=a S14,47 D-2aK3;L2+Kj, P z a"'O (Lz+Kl)/P~ 
_l 

SI4,59 D- K 3; 2L2+2Kj -PO-P3; Po-Pa (2L z+ 2KI -Po- Ps)s/(PO-Po) -3 
_1 

S'4,60 D- 2Ks; Lz+K,-Pz; P O-P3 (L z +K1-PZ)Z/(PO-P3) -a 
-'. S14,61 D- K 3; 2L z+2Kj -PO-P3; P z (2L z+ 2K

l
-Po-Pa)z/Pz -2 

=1+a S'5,31 D-2aK3; P Z, Po-Ps a"'O,-l (PO-Pal +a/Pz 

l-asine 
S,5,3S D+2acoseLs-2asineK3; P O+P3, P O-P3 O:Se< 21<, e;o<37r/2 (Po+ps),.,.S!nc/(Po _ P

3
)j_a slnc 

l+asine a>O,a"'l 
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TABLE III. (Continued). 

Range of 
Class Notation Generators parameters Invariants 

SIZ.5 L 3, Po, P 3; all generators 
S12,39 D-2aK3• L 3 • P O-P3; a=-1 ff 

S13,6 K 3, PI, P z; 
S14,4 Lz+KI , P O-P3• P z; 
SI4.1, 2L z+2KI -PO-P3 , po-ps. P,; 

S15" P O-P3 , pz. PI; ff 

S15.3 Plo Pz, P 3; 11 

S15,4 po. Pj, P z ; 

AIEBAz S8,8 (P,)EB(K3 ; Lz+Kj ) P z 
Sa,26 (D) EB(K3 ; Lz+KI) D 
S9,5 (L3) EB(K3; P o-P3J Ls 
Sl1.11 (D - 2 coteL 3 + 2Ks) EB(coteL s - Ks; Po - P 3) O<e<7r. e"'7r/2 D- 2 coteL 3 + 2K3 
SI1,17 (D + 2(a - cote)L3 + 2K3) a"'O 

EB (cotcL 3 -K3; Po -P3) O<e<7r, e"'7r/2 D - 2(a cote) L3 + 2K3 
SIZ,Z9 (L 3) El:J(D;Po-P3) L3 
SI2,30 (L 3) EB(D, P) L3 
S12,31 (Ls) EB(D; Pol L3 
SIZ,39 (L 3) El:J(D - 2aK3; Po - P 3) a'" 0,-1 L3 
SIZ,40 (Ls) EB(2D -4K3+PO+P3; P O-P3) L3 
S12,45 (4L 3 + Po+ P 3) EB(2D - 4Ks +x[Po + PsI ;Po - P 3) _Ci!)<X<OO 4L 3 +PO+P3 
SI3,5 (Pz) EB(K3; Po -P3) P z 
SI3,l1 (PI) Eb(2K3-PZ; Po-Pz) PI 
SI3,Z2 (D + 2K3) EB(D - 2K3 ; Po - P s) D+ 2K3 

SI3,23 (K3) El:J(D; P z) K3 
SI3,Z9 (K3) EB(D+ 2aL3; P O-P3) a"'O K3 
S14, Z8 (Lz+KI) EB(D; P O-P3) Lz+KI 
SI4,Z9 (Lz+KI) El:J(D; P 2) Lz+KI 
S14,45 (P O-P3) w(D - 2aK3 ; Lz+KI) a=-1 P O-P3 
SI4,46 (L z +KI) EB(D+LI-Kz; P o-P3J L2+KI 
SI5,31 (Po- P s) w(D - 2aK3; P z) a=-l P O-P3 
SI5,33 (PO-P3) E:B(D+ 2a[coseLs - sineK3J; P O-P3) a=l, e=7r/2 P O-P3 

A 3,I S 10,11 Lz+KI-PZ, LI-Kz+bPz-PI ; P O-P3 b"'O P O-P3 

SIO,IZ Lz+KI-PZ, LI-Kz-PI ; P O-P3 " 
Sj4.5 Lz+KI , Pj; P O-P3 

ff 

SI4,6 L,+KI. P Z-bPI,PO-P3 b"'O " 
S14,13 2L z+2Kj -PO-P3, PI; P O-P3 

ff 

S14,14 L,+KI-PZ, PI; P O-P3 
ff 

SI4,15 2L 2+2KI -PO-P3• PZ-bPj ; P O-P3 b=O ff 

S14.16 L,+Kj-Pz, Pz-bPj ; P O-P3 b"'O " 
A 3,2 Sa.j5 2K3+PI ; Lz+KI , P O-P3 (Po-P3J exp[(Lz+KI)/(P3-PolJ 

S8,I6 2K3 -Pz+bP!; L 2+Kto P O-P3 b"'O (Po-Ps) exp[(Lz+KI)/b(P3 -Poll 

SI5,32 D-cosc(Lz+K j ) +sinc(L j -K2); P z, P O-P3 O<c<7r (Po - P 3) exp(Pz/ (P3 - Po) I 

A s,3 S7,5 K3; Lz+K j , Lj-KZ (L j -Kz)/(Lz + K I) 

Sa,7 K 3 ;Lz+Kj, P O-P3 (L z+Kj)/(Po-P3J 

S8,I4 2Ks-Pz; Lz+KI , P O-P3 " 
S10,Z4 D+2aL s-2bK3 ; Lz+Kj, L 1-K2 a=O, b"'O (L z+KI)/(L1-Kz) 

SIO,25 2DI 4aL 3 , 4K3 +Po - P,j; L 2+ K I , LI -K2 a=O " 
SlO,3Z D-2K3; L 2 +Kj , L I -K2+PZ (Ll-K2+PZ)/(Lz+Kl) 

Sj5,16 D; P z, P O-P3 (Po-PNPz 
SI5,I7 D; Po, P 3 (Po-PN(Po+P3) 

SI5,I8 D; PI> P z PtiPz 
Sj5,32 D- cosc(L 2+Kj) + sine(LI-Kz); P z, P O-P3 e~O (PO-P3J/P2 

A 3,4 SI1,4 La-taneK3; Po, P 3 O<e<7r. e"'7r/2 P5-P~ 
SIS,4 Ks; Po, P a " 
S13,I2 2K3 - P 2; Po, P 3 
Sj4,48 2D+4K3+PO-P3; Lz+Kj • P 2 P Z(L2+Kj ) 

A~,5 
(L z +K1) I+a/ (Po -Ps)G h=a/(l+a) S14,45 D- 2aK3; L 2+Kj, P O-P1 a'" 0, -1 

=a S14,47 D-2aK3;L2+Kj, P z a"'O (Lz+Kl)/P~ 
_l 

SI4,59 D- K 3; 2L2+2Kj -PO-P3; Po-Pa (2L z+ 2KI -Po- Ps)s/(PO-Po) -3 
_1 

S'4,60 D- 2Ks; Lz+K,-Pz; P O-P3 (L z +K1-PZ)Z/(PO-P3) -a 
-'. S14,61 D- K 3; 2L z+2Kj -PO-P3; P z (2L z+ 2K

l
-Po-Pa)z/Pz -2 

=1+a S'5,31 D-2aK3; P Z, Po-Ps a"'O,-l (PO-Pal +a/Pz 

l-asine 
S,5,3S D+2acoseLs-2asineK3; P O+P3, P O-P3 O:Se< 21<, e;o<37r/2 (Po+ps),.,.S!nc/(Po _ P

3
)j_a slnc 

l+asine a>O,a"'l 
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TABLE IV. (Continued). 

Class 

Al EBAt5 

h=I+a 
I-a 

A 1EB A f,l 
P= tanc 

= I/a 

= I/a 

Af,z 
01 = 1 

=1 

Af:~ 
B=l ;,=1 

Notation 

S6,3 
S6,11 
S9,:1 
S12,2 
S12,3 
S12,4 
S12,11 
S12,12 
S12,13 

S.13,Z8 

b b = l+b = l+b S10,23 

=~ 

=1 
= 1 
=1 

=1 
=1 
=1 

S10,29 

S14,54 

S15.13 
S15,14 
S15.15 

=_1_ __1_ S15.25 
l+a -l+a 

=_1_ =_1_ 
I-a I-a S15.25 

1 +a 1 
= I-a = I-a Sj5.29 

Generators 

(PO-P3) EB(L3;Lz+Kl,Ll-K2) 
(D) EB(L 3;L 2+K1 ,L1 -K2) 
(K3) EB(L 3; PIoPZ) 
(Po -P3) EB (L 3;Pj,P2) 
(P3) EB(L 3;P2,P j ) 

(Pr) EB (L 3 jP2 ,PI) 
(Po -P3) EB (4L 3 + Po+ P 3 jP2,Pj) 
(P3) EB (2L 3+PO;P2;P1) 
(Pr) EB(2L 3 - P 3 ;PZ ,PI) 

(Po - P 3)EB (D+ 2aL3 - 2bK3; 

L 2+Kj , L j -K2) 

(K3) EB(D+ 2aL 3;Pj,P2) 

(P3) EB(;L 3,KIo K 2) 
(D) EB(;L 3 ,K1,Kz) 

(Pr) EB (;L3,Ll ,Lz) 
(D) EB(;L 3,Lj,L2) 

L 1-K2-PIo 2L z+2K1-PO-P3; P 2, 
P O-P3 

L j -K2' 2L 2+ 2Kl -PO-P3 ; 

P 2 , P O-P3 

Lz+Kjo P O+P3; Pj, P O-P3 
L z+K1-P2, P O+P3; Pjo P O-P3 

D+2aL 3-2bK3; L 2+Kj, L 1-K2, 

P O-P3 

D-2K3; L 2+K1• L 1-K2, P O-P3 

D-K3; 2L 2+2K1-PO-P3, P 2 , 

P O-P3 

D; P lo Pz, P 3-PO 
D; Pit P z, P 3 
D; Pit P 2, Po 

D - 2a eoseL3 + 2a sineK3; P lo P 2 , 

P O-P3 

D-2aeoseL3+2asineK3; P lo P 2, 
P O-P3 

D-2aKz ; PI, P 2, Po 
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Range of 
parameters 

a >0 

a=I 

o<c<rr, c>''/I"/2 

b=-I,a>O 

a>O 

a=O, b""O, -1 

a"" 0, -1 

c=rr/2, a> ° 
a>O 

c=3rr/2, a""1 

a>O 

Invariants 

L 3; (Po-p~I+<1/(PO+P3)j-a 

P O+P2; (P O-P2)2/P1 

P O-P3; (L 2+K1)2+ (L 1-K2)2 

D· " K;; Pl+P~ 
P O-P3 ; " 

P 3; Pl+P~ 
Po; " 
P O-P3 ; pj+p~ 
P 3 ; Pj+P2 
Po " 

P O-P3 i same with tanc-I/a 

P 3; L~-Kj-K~ 
D; L~-Kj-K~ 

Po; Lr+L~+L~ 
D; Lr+L~+L~ 

P O-P3; P~+ (Po-P~(2L2+ 2K1-PO 
-P3+2Pz) 

P O-P3 ; P~+(PO-P~(2L2+2KI-PO-P3) 

P O-P3; Pl+P~-P5 
" " 

(L1 -K2)/(Po -P3);(PO -P3) 

x exp«2L 2 + 2K j )/(Po- P 3» 
Pz/(PO-P3); (PO-P3) exp(2Pl/(PO-P~) 

(PO-P2) exp(PI/(PO-Pz» i 
(P~- P~ -pD/(po -P2)2 

(Po -P3)/(L I -K2); (P o-P3)/(Lz+K1) 

(PO-P3)b/(L I -K2)I+b; (PO-P3)b/ 
(L 2+K1)I+b 

(Po-P3)/(L j -K2)2; (P o-P3)/(L2+K1)2 

(PO-P3)2/p~; (P O-P3)/ 
(2L 2+2K j -PO-P3)3 

(PO-P3)/P2; (P O-P3)/P j 

PslP 2; Psl P I 

Po/P2; Po/PI 

(P O-P3)/p!+<1; (PO-P3)/p!'a 
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TABLE IV. (continuell). 

Class 

A'l:t 
O! ,P= tanc 

O!=tancP=O 

O! = I/a cosc 

p=I+asinc 
acosc 

O!='! P=.! 
a 0 

A1,9 
h=O 

=0 
=0 
=0 
=1 

=1 

=0 
=0 
=a 
=0 
=a 
=0 

=! 

=1 

=b 

Notation 

58,5 

58,6 

58,t2 

58,13 

5 tO,30 

5 t4,26 

514,27 

5t4 ,40 

514 ,42 

5 t4 ,43 

5 j4,44 

Generators 

Ls-tancKs; L 2+Kj, L t -K2, 

Po-Ps 

D+2aL 3 -2bKJ; Lz+KI> Lt-KZ' 

P O-P3 

L 3-tancKs; Pt, P 2, PO-pJ 

D+2acoscLs-2bsincKs; PI> P 2, 
PO-pJ 

2D-4K3+PO+P3; L 2+Kt , P j , 
Po-Ps 

Range of 
parameters 

O<C<1T,C>'1T/2 

a>'O, b>'-I 

O<C<11, c>'11"/2 

a>O, c>'11"/2, 311/2 
O:Sc < 211" 

0>0 

0>0 

2D-4Ks+x(Po-Psl; L z+Kt -P2, _oo<x"', x>'O 

Po-Ps 

D-2aK3;L z+Kj, Pj, P O-P3 a=-l 
D-2aK3; L 2+Kj, P 2-cP1 , PO-pJ a=-l, C>'O 

D-2bKJ+a(b-1)(PO-PS); a>'O, b=-l 
L 2+Kt -P2, P Z-aP1 , PO-pJ 

K3t Pt; Lz+Kj, Po-Ps 
K St P 2 -bPIo L 2+Kj, PO-pJ b>'O 
2K3-P2, Pt; L 2+Kj, P O-P3 
2K3 -PZ, Pz-bPjj L z+K1 , P O-P3 b>'O 
D-2Ks; Lz+Kt-PZ, b>'O 

L 1 -K2+bPz-P1 , Po-Ps 
D-2aLs- 2Ks; L 2+Kj -PZ, a=O 

Lt-Kz-Ptt Po-Ps 
D, L 2+Kj ;Pj • P O-P3 
D, Lz+Kt ; Pz-bPj, Po-Ps b>'O 
D-2aKs; Lz+Kj, PI> Po-Ps a>'O, -1 
D+Lt -K2 , L 2+Kt ; Pl. Po-Ps 
D-2aKs; L 2+Kj, pz-cpt • Po-Ps a>'O, -I, c>'O 
D+Lj-KZ' L 2+Kjj PZ-cPI> c>'O 

Po-Ps 
D-Ks; 2L 2+2K I -PO-PS , PI 

P O-P3 
2D-4Ks+x(Po-Ps); L 2+Kj -PZ' x=O 

P j , Po-Ps 
2D-2Ks+2b(Lt-K2)+ba(Po-Ps); 0>'0 

2L2+2Kj +PO+Ps -"'<b<oo 
P 2 -aP t , PO-pJ 
D-2bKs+o(b-I)(Po-Psl; a>'O, b>'-l 

L 2+Kt -P2, P Z-aPIo 
Po-Ps -"'<b<"" 

L 3 ; Lz+Kj-PZ; L t -Kz-P1, 
P O-P3 

D-2aL3-2KS; Lz+Kj-PZ, a=O 
L t -K2-P1> P O-P3 

D+ 2aLs- 2Ks; L 2+Kj -P2, 
L j -K2-P1, P O-P3 

a>'O 
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Invariants 

{(L 2 +Kt)2+ (Lj-K2)2} 

(
Lt -K2 - i(L 2 + K t») 

x L t -K2 +i(L 2+Kt ) 

(P o- Ps)2b/(t+bl . 
(L 1-K2)2+ (L 2+Kt )2 , 

{(L t - Kz)2+ (L 2+Kt )Z} 

j tanc 

(
L t -K2-i(L 2+Kt») Ibla 

X L t -K2+i(L 2+Kt) 

Pr+P~; (Pt+P~)(Pj-iPz)/(Pl +iPz)]ltOlr 

(Po-PJ)Z 2 (Pt-iPz) I/ocoBc 
(P~+pDl+aBillC; (Pr+ P 2) P t +iPz 

PV(PI+P~); (Pr+P~[(Pt-iP2)/ 
(Pt +iPz»)ila 

II 

none 

II 

(D+ 2K3)(PS -Po> + 2Pt (L 2+Kt); Po-Ps 
c(D+ 2KJ)(P3 -Pc) + 2(cPt -P2)(L2+Kt); 

P O-P3 

a[D+ 2K3 - 2a(Po+ PJ HPs -Pc) 
+ 2(aPt-P2)(L2+Kt-aPt); Po-Ps 

none 
" 
" 
" 
" 
" 

" 
" 
" 
" 
" 
" 

" 

" 

" 

" 

Po-Ps; 2(Po-Ps)Ls-(L t +Kz-Pz)Z 
-(Lj-Kz-Pj)z 

P O-P3; 2(Po-Pr(D-2K3) 
-(L t +K2-Pz) -(L j -Kz-Pj ):1l 

none 
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TABLE IV. (continued) • 

Range of 
Class Notation Generators parameters 

A 4,12 S2,4 Ls. K 3; L 2+Kj, L j -K2 
S5,l2 D- 2aK3• L s-tancK3; L2+Kh a"'O 

L j -K2 O<c<11". c"'11"/2 
S6,I6 D - 2aK3 , L 3; L 2+Kj , L 1-K2 a"'O 
S6.11 2D+4K3+(PO-P3). L 3; L 2+Klo 

L 1-K2 
S6,ZO 2D+4K3+X(PO-P3).4L3+PO-P3; _oo<x<oo 

L 2+K1, L j -K2 
S7,j1 D+2aL 3• K 3; L2+Kh Lj-KZ a"'O 
Sl1;9 L 3-tancK3• D; Ph P 2 O<C<11". c"'11"/2 

Sl1.15 D+2aL 3• L 3-tancK3; Plo P z a"'O 
O<c<C11", c"'11"/2 

Sj2.28 D, L 3; Plo P z 
Sjz,:n D- 2aK3• L 3; Pj, P z a>O 

Sj2.38 2D-4K3+PO+P3; L3; Pj, P 2 
Sj2,44 2D+ 4K3 +X(PO+P3); 4L 3+PO+P3, _oo<x<<<> 

Pj, P z 

TABLE V. Five-dimensional subalgebras. 

Class 

p=l/a 

AtEDAtj 
h=O 
h=O 

A 5•4 

A 5,5 

A!;':~'C 
a=1. c=l 
b=l 

Notation 

56,jO 

55• 1 

53•7 

515 •12 

a = 1/(1 +a) 515 ,23 
b = 1/(1 +a) 
c=(l-a)/(1+a) 

Generators 

(L3)EB(D+2K3; P O+P3) 
EB(D- 2K3; P O-P3) 

(D; P o-P3)EB(D+2K3; 
L I -K2, L z +K1) 

(D, P o-P3)EB(L3; Lj-Kz• 
L 2 +Kj ) 

(K3; P o-P3)EHL3; PI' P 2) 

(D; Po - P 3) EB (2L3 - tanc[2K3 
+Dl; L 2 +Kj• Lj-Kz) 

(K3; P o-P3)EB(D+2K3+2aL3; 

Pj.pz 

(P2) Ell (L 2 +Kj; P O-P3• Pt, 
P O+P3) 

Range of 
parameters 

(PO+P3) EB(D+ 2a(coseL3 - sineK3); c=11"/2. a= 1 
Po - P3 • .Pt , P z ) 

(P2) ED (K3, Pt; L 2+Kj• P O-P3) 
(L 2+Kj )EB(D. L j -K2, P 2, P O-P3) 

(D)EB(L3• K3; Lz+KI• Lt-Kz) 
(Po-P3)EB(L3• D-2aK4; L 2+Kj• a=-l 

Lj-Kz) 
(K3) EB (L3• D; P 2• PI) 
(Po-P3)EB(L3• D-2aK3; p z• Pt) a=-1 

Lz+Kt • L 1 -K2• Pl' P 2; 

PI.PZ; P O-P3• 

L j -K2• 2L2 +2Kt -PO-Ps• 
P 1,P2; P O-P3 

D + 2a(coscL3 - sincK3 ); 

Pl. P 2• P3• Po 
c=11"/2 
a> O. a'" 1 
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Invariants 

none 
If 

If 

If 

If 

If 

If 

If 

" 
" 
" 

Invariants 

{(Lj-Kz)Z + (L 2+K1)Z} 

[L, - K, - i(L2 + K, )] Itame 

lij - K2 + i(L2 +K1) 

(PI + p~){(Pj - iP2)/(Pj + iP2)}l/a 

P O-P3; P z; PI-(PO-P3) 
x (Lz+Kj) 

P 2/(PO-P3); (PO-P3)/Pt • 
(Po - P 3)/(PO + P 3) 

(Po - Psl/ p!+a; (Po - Psl/ Pj+a; 
(Po - P 3)t-a/(po+ P 3)1+a 
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TABLE V. (Continued). 

Class 

A~:t!q 
b=-1 p=O 
q= cote 

b= 
I-a sine 
1 +a sine 

1 
p= l+a sine 

a cose 
q= l+a sine 

A~:t9 
e=1 b=1 

=a+l 

=2 

=1 
=a+l 

=3 

At,20 
b=1 

b=1 

Ag. 23 
b=1 

Ag,30 
h=O 

=0 

=2 

=1/a 

=1 

Ag,32 
h=O 

Ag:k3 
a=l. b=1 

=0 =1 
=-1 =2 

At:k5 
b= 1, 'Y= 0 

b= l+a 
a 
tanc y=--

a 

b= l+a 
a 

'Y=O 

=a 

=1 

=1 
=1 

=2 

Notation 

SU,1 

Sj5,23 

S7,3 
SjO,22 

SjO,28 

Sj4,23 

Sj4,33 

Sj4,52 

S7,6 

Sj4.35 

Sj4.34 

S8.3 
S8.jO 

S19,27 

Sj4.37 

Sj4,53 

S14.24 

S8.2j 

Sj3,j7 

Sj3.j8 

S2.3 

S6,j5 

Generators 
Range of 
parameters 

D - 2a(coseL3 - sineK3); O:s e <rr. e '" rr/2 
Pj' P 2• P3. Po a >0 

K3; L 2+Kj• L j -K2• P 2, P O-P3 
D-2aK3;L2+Kj• L j -K2• P 2, a"'O 

P O-P3 

D-2K3; L 2+Kj• L j -K2-Pj , 

P 2• Po-Ps 
D; L2 + K j• Pj' P 2, Po - P 3 
D-2a~;~+~.~.~.~-~ a"'O 

D-K3; 2L2+2Kj -PO-P3, Pj, P 2 
P O-P3 

2K3-Pj ; L 2+Kj, L j -K2• 
P O-P3, P 2 

D+Lj, -K2; L 2+Kj• Pj' P 2 
P 3 -PO 

2D-4K3+PO+P3;L2+Kj. Pj' P 2 
P O-P3 

K3, Pj; L 2+Kj• P 3• Po 
2K3-P2, Pj; L 2+Kj, P 3• Po 

D-K3; L j -K2, 2L2+2Kj -PO 
-P3• P 2• P O-P3 

D-2aK3; L 2+Kj, Pj. P 3, Po 

D-2K3; L 2+Kj -P2• Pj' P 3, Po 

K3• D; L 2+Kj, P 2• P O-P3 
K3• D; Pj' P 2, P O-P3 
K3, D; Pj' P 3• Po 

D - 2aKs• eoseL3 - sineK3; 
L 2+Kj• L j -K2• P O-P3 

D-2aK3• L 3; L 2+Kj, L j -K2• 
P O-P3 

a"'O 

a'" O. -1 
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Invariants 

(PO-P3)/P2; (PO-P3)exp{(Po 
+PS)/(P3 -Pol-

4P/(Po -P3) + (Po+ P 3)21 (Po - P3)2 

(PO-P3)/(L2 +K j ) 

(Po - P S)"/(L 2 + Kj)j+a 

(Po - P S)/(L2 + K j )2 

(PO-P3l/P2 
(Po - PslIl1+

j 

(Po - P 3)2 I Pi 

(Po - P 3) exp{ (L2 + Kj)1 
(P3 -Po)} 

(Po - P3) exp{2P2/(PO - P 3)} 

" 
(~+P~ - P5 - 2(Ps - P O)(L2 + K j»)3/(Ps - P O)4 

(PI + P~ - P5)j+a/(Po - PS)2 

(Pi + P§ - P5)/(Po - P~) 

P 2(L 2 + Kj)/(Po - P 3) 
P 21Pj 
(Po - PS)2/ P j (Po+P) 

(PO-P3)2a 

«L j - K2)2 + (L2 +Kj)2)j+a 

(
Lj- K 2 -i(L2+ K 1») i taac 

x L j -K2+i(L2 +Kj) 
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TABLE V. (Continued). 

Class 

b=1 
')'= l/a 

b=1 
')'= - tanG 

b= I-a tanG 
')'=- tanG 

b= 1. ')'=0 
=1 =0 
=1 =0 

b=l+a. ')'=0 
=2 =0 

=2 =0 

A 5•36 

A 5•37 

Notation 

511 •8 

5 11 •14 

SlZ. 24 

512.25 

S12.26 

5 12 ,34 

512 .35 

5 12 .36 

58•ZZ 

58•23 

S6.19 

Generators 

D-2aL3• K3; L z +K1• L 1-Kz 
P O-P3 

D-2aLs• L 3 -tancK3; Pl. pz. 
P O-P3 

D. L 3; Pl' P 2• P O-P3 
D. L 3; Pl' Pz. P3 
D. L 3; Pl' P 2• Po 

D-2aK3• L 3; Pl. P2• P O-P3 
2D-4K3+PO+P3; L 3; Pl' pz. 

Po-Ps 
2D-4K3+x(PO-P3). 4L3+PO 

+P3; Pl' P 2• P O-P3 

D. K3; L z+K1• Pl' P O-P3 
D. K,; L 2+K1• P2-cPj • P O-P3 

D- 2K3• L 3; L z +KI -P2• 
Ll -K2 - PI' P O-P3 

T ABLE VI. Six-dimensional subalgebras. 

Dim. of 
derived L 

SL(2, C) 6 

E(3) 6 

E(21) 6 

5 

5 

5 

5 

5 

5 

5 

Notation 

5 1,z 

53•Z 

S4.Z 

f:::~20 

S6.5 

510.Z0 

510•20 

510•21 

Generators 

; L I• L z• Ls. K j , Kz• K3 

;L I • L z• Ls. PI. pz. P3 

; K j • K2• L 3• PI. pz. Po 

L s -tancK3;L2 +Kj• L j -K2• 
P j • Pz. P O-P3 

D + 2aL3 - 2bK3; L2 + K j • L j -Kz 
PI' pz. Po - P s 

L 3; Lz+K1• L j -K2, PI' Pz. 
P O-P3 

4L3+PO+PS ; Lz+K1• Lj-Kz• 
PI. pz. P O-P3 

D - ZaL3 - 2bK3; L z + K I, 
L I - K z• PI. pz. Po - P 3 

D-2aL3-2bK,; L z+K1• 
LI-Kz• PI' Pz. Po-Ps 

2D+ 4aL3 - 4K3 +Po+ P3; L z +K1• 
L 1 -Kz• Pl. pz. Po-Ps 

D-K3; L 1 -Kz• 2L2+2K j 

-po-PS• Pl' pz. P O-P3 

Range of 
parameters 

a>'O 

a>' 0, -1 

-oo<x<oo 

c>'O 

Range of 
parameters 

O<c<7f. c>'7f/2 

b = O. a"" 0 

b '" 0, -1 
-oo<a<oo 

b=-l 
-oo<a<oo 

-oo<a<oo 

5 

4 

D-2aK3;L2+K1• PI> pz. p s• Po a>'O 

212 

58•1 

58.19 

5 8.z 0 

D. Ks; L 2 +K1• L 1-K2• pz. 
PO-P3 

(P2)Efj(L3; L 2+Kj• PI' P" Po) 
D. Ks; L z +K1• Pl' pz. P O-P3 
D, K3; L 2+Kz, Pl' P3• Po 

(K,; po. P,)Efj(L3; Pl' P z) 
D, L3 - tancK3; Pl' P z, P3• Po 
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Invariants 

(PO-P3 )Z (Pz-iP,)-;tane 
(Pl+p~)1-atallC P 2 +iP j 

(Po-P3)z/(PI + Pp 
pV(P~+P~) 
P~/(Pl +P~) 

(Po - P3)2/(Pj +p~)I'" 
(Po - P3 )2/(P j + P~) 

D - 2K3 - 2(L2 +K1)P1/(PO - P3) 
D - 2K3 + 2(L2 + KI)(Pz - cP)/ 

(cPo - cP3) 

{(L2 +KI - P I)2 + (L 1 -K2 - PI)Z}/ 
(2Po - 2Ps) + 2L3 

Invariants 

(i)2 - (K)2; L' K 
Pl+p1+p~;i:;'L 

PI + P~ - P5; POL3 + (p X Kls 

none 

Po-Ps; PoLs+(PxK)3 
-1" L + (P%-~)/4 

none 

Po-PsLD::: 2{a(PoL s -Y J 
+JP~K)3 +POK3 -p. K 

- (PxL)3}/(P O- P3) 

none 

none 

none 

" 

P~-P~; pl+p~ 
(P~+Pl)/(Po -Pg); 

(PI + P~)/(Po - P3)z{<PZ - iP j )/ 

(Pz + iP j )}; tane 
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TABLE VI. (Continued). 

Dim of 
derived L Notation Generators 

4 8 11 ,13 D + 2aL3• L3 - taneK3; 

PI. P 2• P 3• Po 
4 8 12 ,23 D. L 3 ; PI' P 2• P 3• Po 

4 512 •33 D-2aK3; PI. P 2• P3• Po 

4 513 ,16 D. K3; PI' Pz. P3, Po 
4 513 ,25 D+ 2aL3• K3; PI' P 2• P 3• Po 

4 514 •22 D. L 2+KI; PI. P 2• P 3• Po 
4 514 •32 D+LI -K2• L2 +KI; 

PI' P 2• P 3• Po 

A 2EBA14 •12 8 2,7 (D; po-Ps)EB(Ls• D+2Ks; 
3 L 2+KI• L I -K2) 
3 r72 K3• PI' P 2; L 2+KI• L I -K2• 

81~.15 P O-P3 
D. L I -K2• L 2+KI; PI. P 2• 

PO-P3 
3 59•8 D. Ks. L 3; PI' P 2• Po - P3 
3 510• 1 L2 +KI• L I -K2• P O+P3; 

PI' P 2• Po - P s 

TABLE VII. Seven-dimensional subalgebras. 

Dim. of 
derived L Notation Generators 

DEBSL (2, C) 
6 8 1,4 (D)EBe; L I• L 2, L 3• KI> K 2, K 3) 

AjEB E(3) 5 3,1 (Po)EB (;L j • L 2• L 3, PI> pz. P') 

DOE(3) 
6 5 3,6 D; PI. Pz, P 3• LI> L 2• L3 

A IEBE(2.1) 
6 54,1 (P3)EB(;PI> P 2, po. K j • K1• L.). 

DO E(2, 1) 
6 54,6 D; PI> P 2• po. K j • K2• K3 
6 57,1 K 3; Lj-K1, L1+Kj , PI' P 2• P 3, 

Po 
6 510,19 D-2aL3-2bK3; L 1 -K2• L 2+KI• 

PI> P 2• P 3• Po 
5 { 5 2,2 K3• L 3; LI -K2• L2+KIo PI' P 2• 

P O-P3 
8 6,9 D; L 3; L j -K2, Lz+KI• PI. p z• 

P O-P3 

5 D. L3-tancK3; L 2+KI• L j -K2• 
PI' P z, PO-P3 

5 57,14 D-2aL3• K 3; Lz+KI• L j -K2• 
Pj' P 2, P O-P3 

5 55,10 D- 2aK3' L3-taneK3. L2+KI> 
L I -K2• Pj, P 2• P O-P3 

5 56,1 L 3• P O+P3; L 2+Kj , Lj-Kz• 
P j• P 2• P O-P3 

5 56,13 D-2aK3• L 3; Lj-Kz• L2+KI) 
PI> P 2• Po -P3 
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Range of 
parameters 

a >0 
O<e<7r. e"7r/2 

a>O 

a>O 

Range of 
Parameters 

a .. O 

a .. O 
o <e <7r. e "7r/2 

a .. O. -1 

Invariants 

II' (P 2+P 2)I-atllllC(P _iP)it8JJc ,1 2 ~ 

(Po - P 3) P 2 + iP~ 
(~+PV/(PO+P3)3; (P2+PI )/ 

(Po -P3)2 

(p~+p!>I-a/(PO+P3)2; (P~+pV·+I/ 
(Po - P3)Z 

pV(PO
Z -P32); P I/P2 

(Pf-Pi)/(PI2+P~); (P22+PI2) 
(P2 - iP)/(P2 + iPI)}i/. 

(PI2+p~_P02)/p~; (Po-PS)/P2 

«Po - P 3) exp(2P2/(PO - P3»; 
(P12 + pl + P~ - p 02)/(PO - P 3)2 

none 

" 

" 

Po-Ps; PI2+p~+P32 -pij 

Invariants 

(POL3+ (j>xK)3;2/(PIZ+P21_POZ) 
p2_P

0
2 

(P0
2 _p2)1+b /(Po _P.)z 

(POL3 + (j> XKJ3 -p. L)/(Po -P3) 

" 

Dsine+ 2{cose{j> 'L- (j>xKJ 3 
-POL3) 
+ sinc(PoK3 - {j> XL)3 -K' pH/ 
(Po-Ps) 

D+ 2{a(p. L =- (P .!KJs:~LJ 
+ (PoKs - (P XL)3- K ' P)}/ 

(Po -P3) 

D sinc+ 2{(a+D cos cJ(p· L- (P xKls 
-PoL') 
+ sine WOK3 - Q5 XL) 
-p·J()}/(po-P3) 

Po-~; ~~_pz. POL3+<PxJ()S 
-P'L 

(POL3+ (j>xK)3- P' L )/(Po-P3) 

Anthony Peccia 213 



                                                                                                                                    

TABLE XII. (Cantinued). 

Dim of 
derived L Notation 

5 S6,13 

5 S6,14 

Generators 

D-2aK3, L 3; L 1-K2, L 2+K1, 
PI' P 2, P O-P3 

2D-4K3+PO+P3, L3; L 2+K1, 
L 1- K2, PI' P 2, Po - P3 

Range of 
parameters 

a=-l 

Invariants 

P O-P3; P OL 3+(pxK)3- P' L; 
2 (POK3 - (p XL)3 - R· p) 

+ (Po-P3)D 

(PoL3 + (px K)3 - P .1.)/(Po - P3) 

5 S6,I8 2D-4K3+x(Po-P3), 4L3+PO+P3; _oo<x<oo {P2
2 +P1

2 +p/ -P0
2 + 4((P0 -P3)L, 

Ll - K2, L2 + K1• Pl' P2• Po - P3 +P1(L1-K2) 

PI' P 2, Po -P3 
5 S7,9 D. K 3; L 2+K1, L 1-K2, PI' P 2, 

P O-P3 

+ P 2(L2 + K1)J}/(P0 -P3) 
2 (POK3 - (p XL)3 -p. K)/(Po -P) +D 

5 S8,I8 D, K 3; L 2+KI, Pj, P 2, P 3, Po (Pi + Ps - Pij)/ P, 
4 S9,7 D, K3: L 3; PI' P 2', P 3, Po (Pi+p~)j(P02 -p~) 
4 S10,14 D,~-~.~+~;~,~,~,~ (Po -p2)/(Po _p)2 

TABLE VIII. Eight-dimensional subalgebras. 

Dim. of 
derived L 

6 

6 
6 

Notation 

S2,I 

S3,5 
S4,5 

Generators 

K 3• L 3; Ll -K2' L 2 +Kj, Po, 
P!> P 2• P 3 

D. L 3; Llo L,. po. PI. P 2• P 3 
D, L 3; Klo K,. po. Pl. p,. P 3 

Range of 
Parameters Invariants 

POz_pz; (PoL3+(PXKh-P'L)/ 
(Po -P3) 

(p 'L)z/Po
z, pZ/P5 

(POL3+ (PXK)3)/P3; (pl+pi-pJ)/ 
p

3
2 

6 S5,5 D, L3-tancK3; L 2+KI• LI-Kz, O<c<rr. c-'rr/2 
po. Pi> P z, P 3 

none 

6 S5,9 D-2aK3. L3-tancK3; L,+Ki> a-' 0 " 
LI-K" po. PI. p Z• P 3 O<c<rr. c-'rr/2 

6 S6,8 D. L 3; L I -K2• L 2+KI, po. 
PI' p z• P 3 

6 S6,12 D- 2aK3. L 3; Lj-Kz• Lz+Kj• 
~,~,~,~ a-,O "; (PoZ_pZ)I+U/(po-p)2 

none 6 S7,8 D, K 3; LI -Kz• L 2+KI, Po, 
Pl. p Z• P 3 

6 S7,13 D+aL3, K 3; Lz+Kj, LI-Kz, a-' 0 " 

5 S2,6 

Po, P lo P z, P 3 
D, L 3, K 3; Lz+KI• L I -K2, PI' 

p z• P O-P3 

TABLE XI. Nine-, ten-, and eleven-dimensional subalgebras. 

Dim. of 
derived L Notation 

(6) S2,5 

(10) SI,l 

(10) SI,3 

Generators 

D, L 3, K3; L I -K2, L 2+KI , 
Po, PI' P z, P 3 

; L I , L z• L 3, K I, K z, K 3, PI' 
P z, P 3, Po 

D; L I• L z, L 3• KI , K2, K3, PI' 
P z, P 3, Po 

*Permanent address: Physics Department, McGill University, 
Montreal, Canada. 
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Phys. 16, 1615 (1975). 
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J. Math. Phys. 17, 977 (1976). 
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Range of 
Parameters Invariants 
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Exact occupation statistics for two-dimensional lattices of 
single particles * 

Eizo Miyazaki and Iwao Yasumori 

Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan 
(Received 14 September 1976) 

A general expression is developed which describes exactly the ensemble average number of one- or two
dimensional structures per arrangement, created when indistinguishable single particles are arranged on a 
two-dimensional lattice. The expression obtained is applied to the calculation of some physically important 
structures which appear on a rectangular and a closest-packed hexagonal lattice. The problem of nearest
neighbor pairs is then solved as a special case from the general expression. 

I. INTRODUCTION 

A statistical mechanical treatment of adsorption, 
heterogeneous catalysis, elasticity, alloys, magnetism, 
and other cooperative phenomena requires knowledge 
of the number of occupied, mixed and vacant nearest
neighbor pairs. It also requires knowledge of the (par
tial) structures with more complex configuration which 
are formed on an ordered two-dimensional lattice, e. g. , 
mixed or vacant structures composed of so-called 
"Bn-sites"t and of a stepped surface with some "ter
races.,,2 These structures are known as active sites in 
the sense that they may play important role on adsorp
tion and catalysis on a solid surface. Several simple 
structures among them formed on a rectangular lattice 
are shown by dotted lines in Fig. 1. 

The question of the nearest-neighbor pairs has pre
viously been considered, 3-5 and the exact relationships 
have been developed which describe the exact occupation 
statistics for one-dimensional array of ;\-bells3 and for 
two-dimensional rectangular4 or other lattices5 of single 
particles (;\=1; here;\ refers to the number of con
tiguous lattice sites occupied by a particle)o 

In the present paper, a general expression is devel
oped which describes exactly the ensemble number of 
the structures created when indistinguishable single 
particles are arranged on a two-dimensional lattice. 
The expression obtained is then applied to calculation 
of some structures which appear on a rectangular and 
a closest-packed hexagonal lattices. There the problem 
of the nearest-neighbor pairs is solved as a special case 
from the general expression. 

II. GENERAL EXPRESSION 

As is known, the quantity W(q,N), the number of dis
tinguishable ways in which q indistinguishable single 
particles are arranged on a lattice of N equivalent sites, 
is given by 

• • ••• • , 

• ••• '.', 
••• . ' ••• , 

• , . • • • • , 
• , . ' • 'if 

• 
, 
, 

-

• 
• • • 
-

FIG. 1. A representation of 
several simple structures 
created when single particles 
(e) are placed on a rectangu
lar lattice (0). The struc
tures are shown by dotted 
lines. 
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W(q,N) = (:)=N!/(N - q)!q! (1) 

because there are N - q vacant sites and N - q +q =N 
individuals to be permuted, of which q are of one kind 
and N - q of another. The total number of particles 
which appear in all possible arrangements, Nt, is then 
written by 

Nt=qW(q,N)=q(:) (2) 

since there are q particles in each of the W(q, N) ar
rangementso The quantity Nt is also derived on the 
basis of the following argument: When q particles are 
arranged in all possible ways on a lattice of N sites, 
a particle at a particular site will occur (~:V times 
since the rest of the particles, q - 1, can be arranged 
in all possible ways on the rest of the sites, N - 1. 
There are N distinguishable ways of placing a particle 
on the lattice; hence we obtain 

(N-1) 
Nt =N q -1 ' (3) 

which is equivalent to the q(~) in Eq. (2). 

These arguments will be generalized to the calcula
tion of the total number of structures with a one- or 
two-dimensional configuration, instead of the particles 
in the above case, created when q single particles are 
placed in all possible ways on N sites. We define a as 
the number of particles included in a structure having 
a definite configuration and consisting of z sites, and 
we define a~ as the number of distinguishable ways of 
placing such a structure on a lattice composing of N 
siteso If q particles are arranged in all possible ways 
on the lattice, the structure occupying a particular posi
tion on the lattice occurs (:::) times because the q - 1"1 

remaining particles can be arranged in all possible ways 
on the remaining N - z sites. For the case of single 
particle (;\ = 1) the quantity, (:_-.,~), is independent of the 
position on the lattice, therefore N~, the total number 
of such structures created when q particles are ar
ranged in all possible ways on N sites is given by 

Nz=a~(N-Z), 
q-a 

and the ensemble average number of the structures 
per arrangement, n~, is 

n~=N/W(q,N) =a~(: ~ ~)/(:) 

Copyright © 1977 American Institute of Physics 
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= (J8q(q -1)(q - 2)'" (q- a + 1)(N -q)(N -q -1) 

x··· (N - q - z + a + 1)[N(N -1)(N - 2)'" (N - z + 1)]-1 

(5) 

or P 8 , the ensemble average number of the structures 
per sites is 

Pe=n8/N 

= (Jeq(q -1)(q - 2)'" (q - a + 1)(N - q)(N - q -1)" . 

x (N - q - z + 0' + 1) [NN(N - 1)(N - 2)' •• (N - z + 1)]-1. 

(6) 

In the following sections, we will consider the quantity, 
(J 8' for evaluating these quantities, N 8 , n8 , and P 8' for 
some structures formed on a rectangular and a closest
packed hexagonal lattice. The structures considered 
here are important for physical and chemical problems. 

III. STRUCTURES ON A RECTANGULAR LATTICE 

A. r X s rectangular structure 

We first consider the case of a rectangular structure 
consisting of r columns and s rows which appears on a 
similar rectangular lattice composing of R columns and 
S rows. There are (R - r + 1)(S - s + 1) distinguishable 
ways of placing the structure on the lattice of which 
R - r + 1 are of one kind along a column and S - s + 1 are 
of the other along a row. When r * s, there are 
(R - s + 1)(S - r + 1) additional distinguishable ways 
which may be obtained by interchanging rand s. Hence 
the number of such the structures created when q 
particles are arranged in all possible ways on a R x S
rectangular lattice is obtained from Eq. (4) as 

[(R - r + 1)(S - s + 1) 

+(R_s+1)(S_r+1)](R:-=-;S) (7) 

for r*s, and 

(R - r + 1)(S - r + 1) (
RS - i'-) 
q-O' 

(8) 

for r=s. 

The number of occupied nearest-neighbor pairs (Nll ), 

number of occupied third-nearest-neighbor pairs with 
or without intervening particles (N111 or N101 , respec
tively) created when q particles are arranged in all 
possible ways may be derived respectively by setting 
[r=2, s=1, 0'=2], [r=3, s=1, 0'=3], or [r=3, 
s=1, a =2] in Eq. (7) as 

(
RS- 2) 

N ll =(2RS-S-R) q-2 ' (9) 

(
RS - 3) 

NUl = (2RS - 2S - 2R) q _ 3 ' (10) 

or 

(
RS- 3) 

NlOl = (2RS - 2S - 2R) q _ 2 ' (11) 

and N lO , the number of mixed nearest-neighbor pairs 
where one site is occupied and another is vacant, is 
given by setting r = 2, s = 1, and QI = 1 in Eq. (7) as 
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(
RS - 2) NlO =2(2RS-S-R) q-1 ' (12) 

where the factor 2 prior to the bracket in Eq. (12) 
arises from interchangeability between the occupied 
site and the vacant site in the mixed nearest-neighbor 
pairs. The ensemble average number of these nearest
neighbor pairs per arrangement, nu, nlO, nUl' and nlOl' 

are calculated from Eq. (5) and are given by 

and 

q(q - 1) 
nl1 = (2RS - S - R) RS(RS _ 1) , 

q(RS-1) 
nlO = 2(2RS - S - R) RS(RS _ 1)' 

q(q - l)(q - 2) 
n111 = (2RS - 2S - 2R) RS(RS _ l)(RS _ 2) , 

q(q - 1)(RS - 1) 
nlOl = (2RS - 2S - 2R) RS(RS _ I)(RS _ 2) • 

(13) 

(14) 

(15) 

(16) 

The results (13), (15), and (16) are equivalent to the 
equations derived by previous methods. 4,5 Thus, the 
numbers of nearest-neighbor pairs may easily be cal
culated as special cases of Eq. (7). 

B. Linear array along a diagonal 

Here we consider the case of a linear array consist
ing of r sites along a diagonal. There are 2(R - r + 1) 
(S - r + 1) distinguishable ways of placing the linear 
array on a R x S-rectangular lattice where the factor 
2 arises because there are two distinguishable direc
tions of diagonals on the lattice. Hence, the number of 
the linear arrays created when q particles are arranged 
in all possible ways on the R x S-rectangular lattice is 
given by 

2(R-r+1)(S-r+l) (RS -r) , 
q-QI 

(17) 

so that Nil, the number of occupied next-nearest
neighbor pairs, i. e., the number of occupied nearest
neighbor pairs along a diagonal, is obtained by setting 
r=2 and QI = 2 in Eq. (17) as 

or the ensemble average number of next-near est
neighbor pairs per arrangement, nfl, is 

nil = 2(R - I)(S - 1) q(q - l)/RS(RS - 1). 

(18) 

(19) 

Equations (18) and (19) are also equivalent to the pre
viously derived results. 4 

C. Isolated r X s rectangular structure with filled particles 

In this section we consider the case of an isolated 
rxs-rectangular structure with filled particles, i. e., 
the structure that is completely occupied by particles 
and surrounded by vacant sites of nearest neighbors. In 
this case three different configurations should be con
sidered separately due to the structures forming at (a) 
corners, (b) edges, and (c) other positions on a R x S
rectangular lattice: For the respective case, there are 
(a) eight distinguishable ways of plaCing the structure 
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on four corners, of which four ways are obtained by 
interchanging rand s when r*s, (b) 2(R - r-1) 
+ 2(S - s - 1) + 2(R - s -1) + 2(S - r -1) distinguishable 
ways on the four edges, of which the last two terms 
are of additional distinguishable ways created by inter
changing rand s when r* s, and (c) (R - r - l)(S - s - 1) 
+ (R - s - l)(S - r - 1) ways which are obtained by 
referring to Eq. (7). Hence, the total number of iso
lated rxs-rectangular structures with filled particles 
created when q particles are arranged in all possible 
ways is given by summing the above three cases as 

8 (RS- rs -r- s) +2(R +S- 2r- 2) (Rs-rs - 2s -r) 
q-rs q-rs 

+ 2(R + S _ 2s _ 2) (RS - rs - 2r - s) 
q-rs 

+ [2 (RS - R - S + rs + r + s + 1) 

_ (R +S)(r+ s)] (RS - rs - 2r- 2S) 
q-rs 

for r*s, and 

4 (RS--Yl-2r) +2(R+S-2r-2) (RS--Yl-3r) 
q--Yl q--Yl 

(
RS - -Yl- 4r) +(R-r-l)(S-r-1) q--Yl 

(20) 

(21) 

for r=s. When we set r=s=l in Eq. (21), we obtain 
the number of isolated particles created when q parti
cles are arranged in all possible ways on a R x S
rectangular lattice as 

4(RS- 3) +2(R+S-4) (RS-4) 
q-1 q-1 

+ (R - 2)(S - 2) (~S_-15 ) (22) 

and the probability that a site is occupied and isolated 
is 

(RS-q)(RS-q-1)q [4+ 2(R+S-4)(RS-q-2) 
(RS)(RS)(RS - l)(RS - 2) RS - 3 

(R - 2)(S - 2)(RS - q - 2)(RS - q - 3)] 
+ (RS - 3 )(RS - 4) • (23) 

Equation (23) leads to 8(1 - 8) 4 in the limit as Rand S 
approach infinity, where 8 denotes surface coverage 
defined by 8==q/RS. The quantity given by Eq. (23) is 
important for some catalysis problems on metal 
surfaces. 5 

IV. STRUCTURES ON A CLOSEST-PACKED 
HEXAGONAL LATTICE 

Here we shall consider a few examples of structures 
which appear on a closest-packed hexagonal lattice con
taining M sites along an edge, as shown in Fig. 2. The 
total number of sites, N h , is then given as a function of 
Mby 

M-l 
Nh== ~ 6(M- k) + 1 ==3M(M-1)+ 1. 

k=l 

A. linear array of r-contiguous sites 

In this case, there are three different directions on 
the lattice, and for each direction there are 
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2M_2 
2 ~ (k - r+ 1) + (2M -1- r+ 1) 

== (M -1)(3M - 2r) +2M - r 

distinguishable ways of placing the structure on the lat
tice for r~M+1 and 

2M_2 
2 ~ (k-r+1)+(2M-1-r+1)=3(2M-r)2 

k=r 

ways for r ~ M, where the factor 2 prior to the first 
terms in the left-hand side of the equations arises from 
the symmetry property associated with the axis denoted 
by an arrow in Fig. 2 and the second terms are due to 
the longest linear array consisting of 2M - 1 sHes. 
Hence, the number of linear arrays of r-contiguous 
sites created when q particles are arranged in all possi
ble ways is given by 

3[(M -1)(3M _ 2r) + 2M _ r]( Nh - r) 
q-IY. 

(24) 

for r~M+1, and 

3(2M _ r)2 (Nh - r) 
q-a 

(25) 

for 2M - 1 ~ r ~ M. Thus, Nu , h' NUt, h' and NtOt,h, the 
numbers of occupied nearest-neighbor, next-nearest
neighbor pairs with and without intervening particles, 
are obtained by setting [r == 2, Q' = 2], [r = 3, 0' = 3], 
and [r=3, a==2) in (24), respectively, as 

NU,h==3(3M2 - 5M+2) (~h_-22), (26) 

( 2 ) (Nh - 3) N1l1•h == 3 3M - 7M + 3 q _ 3 ' (27) 

and 

( 2 ) (Nh - 3) Nt01 ,h==3 3M -7M+3 q-2 ' (28) 

and the ensemble average numbers per arrangement, 
nll,h' nl11.h' and nl01,h 

(29) 

(30) 

and 

(31) 

The ensemble average numbers per site [see Eq. (6)], 
PU,h' P 1t1,h, and P 101,h, lead to 382

, 383, and 382(1_ e) 
respectively, in the limit as Nh or M approaches infinity. 

FIG. 2. Closest-packed 
hexagonal lattice with M sites 
along an edge. The arrows 
denote symmetry axes. 
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B. Closest-packed hexagonal structure with m sites 
along an edge 

There are 
2M_m_l 

2 E (k-m+1)+2M-2m+1 
h=M 

=3(M- m)(M - m +1) + 1 

distinguishable ways of placing the structure on the lat
tice; hence the number of such the structures created 
when q particles are arranged in all possible ways is 
obtained from Eq. (4) as 

[3(M_m)(M_m+1)+1](Nh-Z) , 
q-CI. 

(32) 

where z = 3m(m - 1) + 1. Thus, for example, the number 
of structures in which a vacant site i$ surrounded by 
six filled sites, created when q particles are arranged 
in all possible ways, is obtained by setting m = 2 and 
CI. = 6 in (32) as 

(3M2 _ 9M + 7) (Nh - 7) (33) 
q-6 ' 

or the probability that a site is vacant and surrounded 
by six filled sites is 

(3M2 _ 9M + 7) q(q -l)(q - 2) 0" (q - 5)(Nh - q) (34) 
N~(Nh - l)(Nh - 2) • 0 • (Nh - 6) , 

which is also equivalent to the probability of success 
when attempting to place, in a random manner, an 
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additional particle on the vacant site in the structure. 
The quantity shown in (34) leads to B6(1_ B) in the limit 
as Nh or M approaches infinity. 

v. CONCLUSION 

We have derived a general expression which describes 
exactly the ensemble average number of structures per 
arrangement, created when single particles are 
arranged on a two-dimensional lattice. The number of 
nearest-neighbor pairs of various types is then obtained 
easily from the general expression. 

*This work supported in part by RCA Research Laboratories, 
Inc. 
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Systems of imprimitivity and representations of quantum 
mechanics on fuzzy phase spaces * 
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The problem of expressing quantum mechanical expectation values as averages with respect to nonnegative 
density functions on phase space, by analogy with classical mechanics, is reexamined in the light of some 
earlier work on fuzzy phase spaces. It is shown that such phase space representations are possible if 
ordinary phase space is replaced by a so-called fuzzy phase space, on which the usual marginal distribution 
functions are redefined to conform to the fact that arbitrarily precise simultaneous measurements on 
position and momentum are not compatible with quantum mechanics. In the process a generalization of 
Wigner's theorem on the nonexistence of phase space representations of quantum mechanics, which also 
satisfy the standard (classical) marginality conditions in position and momentum, is obtained. It is shown 
that a (continuous) representation of quantum mechanics exists on a given fuzzy phase space if an only if 
the corresponding confidence functions for position and momentum measurements satisfy the Heisenberg 
uncertainty relations. 

1. INTRODUCTION 

In classical statistical mechanics the state of a sys
tem is represented by a probability density p(q, p), 
which is a normalized nonnegative real-valued function 
on a 6n-dimensional phase space r == R 6n

• The expec
tation value (A)p of any observable A in the state p is 
given by the integral 

(A)p== Ir.A(q,p)p(q,p)dqdp, 

where A(q,p) is the measurable function on r which 
represents the observable A. Furthermore, the mar
ginal density functions 

p'(q) = JIR 3np(q,p) dp 

p"(P) = J
IR

3np(q, p) dq 

represent, respectively, the configUration and momen
tum space probability densities of the system. 

In quantum mechanics, on the other hand, the state 
of a system is represented in general by a normalized 
density matrix p which is a positive trace-class operator 
on a Hilbert space ft, and the expectation value of an 
observable A (which is now a self adjoint operator on 
H) is given by 

(A)p=Tr[Ap]. 

Attempts have often been made (cf. Refs. 1 and 2, and 
references cited therein) to write quantum mechanical 
expectation values also as phase space averages with 
respect to some probability density p(q,P). In other 
words, one tries to find a density function p(q,P) for 
each state p and a generalized function A(q,p) for each 
observable A such that one would have 

Tr[Ap] = Ir A(q,p)p(q,P) dqdp. 

However, it was shown by Wigner (cf., for example, 
Ref. 3) that if, for all states p, the corresponding den
sities p(q,p) are chosen to be positive semidefinite 
[p(q,p) ~ 0 for all (q,p) in r], then the marginality 
conditions 
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Jm3np(q,P)dp=(qipiq), (1.Ia) 

Jm 3np(q,P)dq=<PipiP), (1.Ib) 

cannot be satisfied in general without violating the 
canonical commutation relations 

for position and momentum. On the other hand, if one 
drops the positivity condition, Wigner's result no longer 
applies. Instead, however, one is faced with a tremen
dous choicel of functions p(q,P), which, in an attempt 
to preserve formal appearances, are then labeled as 
"quasiprobabilities." The nonpositive nature of these 
quasiprobabilities is then explained away as a quantum 
effect brought about by the uncertainty relations. 1 

In contradistinction, we propose to show that a phy
sically meaningful and logically consistent way out of 
this impasse can be found by making use of the very 
root of the problem-namely, the impossibility of mea
suring both position and momentum precisely and simul
taneously. In other words, it seems plausible that if we 
do not insist on being able to measure sharp and simul
taneous values for position and momentum, and if we 
therefore replace conventional phase space by a fuzzy 
phase space, 4,5 we would still be able to obtain a posi
tive semidefinite density p(q,P) which would then satisfy 
a modified marginality condition, appropriate to the 
fuzzy phase space being used. This is the approach that 
we shall adopt in this paper. For details on fuzzy 
spaces, and in particular on fuzzy phase spaces, we 
refer the reader to Refs. 4-7, and only collect here 
a few basic facts about fuzzy phase spaces, to set up 
the notation as well as for future reference. 

A fuzzy phase space (r, v) is obtained from the ordi
nary phase space r by replacing each point (q,P) E l' 
by a fuzzy point (q,p) defined as the four-tuple «(q, v.), 
(p, v;», where for each q and p, v. and v; are normal
ized confidence measures. For any q E R 3n (resp. p 
E R 3

") and any Borel set ~1 (resp. £l2) of 1R3n
, V.(~l) 

[resp. V~(~2)] represents the probability that when the 
observable Q (resp. P) is measured with a realistic, 
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i. e., imperfectly accurate, apparatus and a reading q 
(resp. pJ is obtained, the actual value of Q (resp. P) 

is within the set ~l (resp. ~2)' Thus, a fuzzy phase 
space is not associated to a system in isolation from 
the methods and instruments used in performing mea
surements on that system, but rather to a system and 
a class of instruments whose accuracy calibrations4 ,5 

yield the chosen confidence measures at each point 
(q, P) E 1'. If v. (resp. V~) has a density function x., (resp. 
X;) such that 

(1. 2a) 

(1. 2b) 

for all Borel sets ~b ~2 in R 3n
, we call x., (resp. X;) 

a confidence function for q (resp. pl. In the present 
notation, ordinary phase space [' = R 6n is to be asso
ciated with the fuzzy phase space (1', 0), consisting of 
four-tuples [(q, 0.), (p, op)], o. (resp. op) being the delta 
measure on R 3n which is centered at q (resp. p). The 
fuzzy phase space (1', v) is equipped with the same Borel 
structure as l' = R 6n through the association 

(q,p) t- ((q, v.), (p, v;)). 

Our fuzzy phase spaces will be assumed to be trans
formation spaces under the Galilean group C;, acting 
independently on each particle in the system. A typical 
element g of r; is given by the transformations 

rj- ri =Rirj +Vit + d;, 

k i - k: =Rikj +miVj, 

l-t'=t+b, 

(1. 3) 

of the position r i = (q3i+l, q3i+2, q3i+3) and momentum k j 

= (P3i+b P3i+2, P3i+3) of the ith particle (i = 0, 1, 2, ... , 
n - 1), characterized by a rotation R i , velocity incre
ment Vi, and space translation d j , and can be consi
dered as mapping the corresponding phase space ele
ment (q,p) into another element ([q]g, [p]g) computed in 
accordance with (1. 3). The action of g on (1', v) is then 
assumed to be 

and, as a consequence, 6 

vl.lg(~l) = V.([~l]g-l), 

V~P]C(~2) = v;([~2]g-1) 

(1. 5a) 

(1.5b) 

for all Borel sets ~l' ~2 in R 3n
; here [~l]g-l (resp. 

[~2]g-1) is the translate of the set ~l (resp. ~2) through 
g_l. Further, v.=v.' or vp=vp' if and only if q=q' or 
p =p', respectively. 

Once we are prepared to replace the standard phase 
space by a fuzzy space, we have to replace the mar
ginality conditions (1. 1) by the new relations 

f IR 3np(q, p) dp = fIR3n v.(dq')(q'l p I q'), 

fIR3n p(q, p) dq = fIRsn v;(dp')(P'1 pip'), 

(1. 6a) 

(1. 6b) 

where the right-hand sides of (1. 6) represent the proba
bility distributions in the random variables q and p ob
served with apparatuses whose accuracy calibrations4

,5 
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at given points qo and Po are specified by the confidence 
measures Vqo and v:o' respectively. 

After examining in Sec. 2 an abstract concept of phase 
space representations of quantum mechanics and relat
ing it to the existence of informationally complete sys
tems of imprimitivity on the phase space 1', we tackle 
in Sec. 3 the problem of the existence of representations 
which obey the marginality conditions (1. 6). We obtain 
a kind of extension of Wigner's result in Theorem 4 by 
proving that there are no (continuous) representations 
if the canonically conjugate spreads4 of the confidence 
measures v. and v; do not satisfy the uncertainty rela
tions, while solutions do exist as soon as these rela
tions are satisfied. 

Another crucial result is contained in Theorem 2, 
which shows that if one starts with an abstract phase 
space representation of quantum mechanics, which then 
leads to a system of imprimitivity, specified in terms 
of a positive operator valued (POV) measure a(~) on 1', 
one is mathematically led to a fuzzy phase space struc
ture as soon as one imposes the phYSically mandatory 
requirement that the marginal Q and P components of 
a be informationally equivalent to the conventional spec
tral measures & and EP of Q and P, respectively. 

These and other points will be further discussed in 
the concluding Sec. 4. 

2. PHASE SPACE REPRESENTATIONS AND SYSTEMS 
OF IMPRIMITIVITY 

In this section we give the formal definitions of a 
phase space representation of quantum mechanics and 
of a phase space system of imprimitivity, and derive, 
in Theorem 1, the relationship between the two. The 
proof of the theorem is to be found in Appendix A. 

Since we shall be dealing with nonrelativistic quantum 
mechanics for n spinless particles, we shall take for 
our Hilbert space H =L2(R3n , dq), and denote by B1!ff) 
the normed (under the "trace norm") linear space of 
all trace class operators on iL The positive cone of 
B1!ff), i. e., the set of all positive semidefinite trace 
class operators onH, will be denoted by Bl!ff)+. By 
IY' (r) we shall denote the (normed linear) space of all 
bounded complex measures on the phase space r = JR6n

, 

and by IYJ (r)+ the cone of all positive semidefinite bound
ed measures on 1'. Let g - Ug be a strongly continuous, 
unitary, irreducible representation on H of the Galilean 
group r; on 1'. We next introduce two concepts which 
will be basic to the sequel. 

Definition 1: A phase space representation of the 
(nonrelativistic) quantum mechanics of a spinless, n
particle system is a linear map (over JR+) 

7T: p EB1!ffr - J.1.p E/Y/ (r)

which satisfies: 
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where, for any Borel set .a. in r, 

(2.5) 

Definition 2: A phase space system of imprimitivity 
is a positive operator valued (POV) measure a defined 
on the Borel sets A of r [and assuming values in the 
set B (/Ir of positive bounded operators on Ii] which 
satisfies 

(i) a(r) ==1, 

where 1 is the identity element in B (/I), 

(ii) a([Ak)=U1a(.a.)Ug , for allgEq. 

(2.6) 

(2.7) 

A phase space system of imprimitivity is said to be 
informationally complete7 iff the only trace-class oper
ator P satisfying Tr[a(A)p] = 0 for all Borel sets .a. in 
r is P = 0; it is said to have a continuous spectral den
sity if for each (q,p) E r there exists a bounded positive 
definite operator F(q, p) in B (/It satisfying 

a(.a.) == L F(q, p) dq dp, (2.8) 

for all Borel sets A in r, and such that under the 
Galilean translations (q, p) E 0' , 

Ut. ,p)F(O, O)U(. ,P) =F(q, p). (2.9) 

We shall state now the main result of this section, 
namely the connection between a phase space represen
tation of quantum mechanics and a phase space system 
of imprimitivity. 

Let LI(r) denote the set of absolutely integrable (with 
respect to the Lebesgue measure dq dp) complex func
tions on rand LI(r)" the nonnegative functions in this 
set. 

Theorem 1: Every phase space representation of 
quantum mechanics 1T determines an informationally 
complete phase space system of imprimitivity a such 
that, for all pc: B 1 (H)+ and all Borel sets .a. in r, 

(2.10) 

where fp is an element in L I (rr. The map p f- fp is a 
linear isometry. Conversely, every informationally 
complete phase space system of imprimitivity deter
mines, canonically through (2.10), a phase space repre
sentation of quantum mechanics. 

Furthermore, a has a continuous spectral density 
F(q, p), if and only if fp in (2. 10) is a continuous func
tion in LI(rr for each PEBI(/I)+. 

In view of this result we shall adopt the following 
definition. 

Definition 3: The phase space representation of quan
tum mechanics 1T will be said to be continuous if and 
only if its canonically associated system of imprimi
tivity [Eq. (2.10)] has a continuous spectral density. 

Having thus succeeded in setting up a one-to-one cor
respondence between phase space representations of 
quantum mechanics and informationally complete phase 
space systems of imprimitivity, we shall exploit, in 
the next section, the mathematical properties of the 
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latter to relate phase space systems of imprimitivity to 
fuzzy phase spaces. The analysis is intended to show 
how physical restrictions, namely the marginality con
ditions, lead to the existence of fuzzy phase spaces 
which are Borel isomorphic to r (Theorem 2). Other
wise, in the absence of such marginality conditions, we 
could not venture to make any suggestions as to a phy
sical interpretation of the measure !J.p on r associated 
with a state p, since there would be no assurance that 
such an interpretation would conform to the conventional 
interpretation of quantum mechanics, in the realm of 
validity of the latter. In fact, our concept of phase space 
representations of quantum mechanics essentially co
incides with that proposed by Agarwal and Wolf, 1 ex
cept that the Agarwal-Wolf n rules of association, 
translated into our terms, would only require !J.p to be 
a signed (real) measure, when PEB 1(/1)', rather than 
a positive semidefinite one. To make the correspon
dence with the Agarwal-Wolf approach clear we note 
that the existence of the POV measure a(.a.) enables us 
to associate to any complex valued Borel measurable 
function g(q, p) the operator (in the notation of Ref s. 1 
and 2) 

g(q,p) = fr g(q,p)a(dqdp), (2.11) 

which in our case is positive semidefinite if ff(q, p)? O. 

To end this section we mention two examples of nor
malized POV measures on r, which would lead to lin
ear maps 1T:B 1(/l)'-IfI (rr through Eq. (2.10). How
ever, in the first case one of the marginality conditions 
in (1. 6) is violated, whereas in the second, the covari
ance condition (2.7), and hence (2.4), is not satisfied 
(such a POV measure could arise if, for example, one 
tried to compute joint probabilities for the outcome of 
successive measurements on the observables Q and P, 
following the suggestion of Davies and Lewis8

). 

Let X, and x; be two sets of confidence functions on 
R 3n which satisfy 

x, (q') = Xo(q' - q), 

X;(P') =x~(P' -pl. 

(2. 12a) 

(2. 12b) 

Let EO and E P be the usual spectral measures for the 
operators Q and P, respectively, and let 

EO(x,) = fJR3nX,(q')E Q (dq'), 

EP(X;) = fJR 3n X;(p')E P (dP'). 

(i) Let X; 12 be the function defined as 

x! 12(q') = [x,(q') ]1/2, 

for all q' E R3n
• Then the spectral density 

(2. 13al 

(2. 13b) 

(2.14) 

(2.15) 

defines, through (2.8), a POV measure on r for which 
the associated linear map 1T leads to the marginality 
condition (1. 6a) but not (1. 6b). On the other hand, 
F(q,p) satisfies the covariance condition (2. 9). 

(ii) Let Po EBI (/It, and suppose that Trpo = 1. Then 
the spectral density 
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(2. 16) 

defines a POV measure which violates the covariance 
condition (2.9), but satisfies both the marginality con
ditions in (1. 6). 

3. QUANTUM MECHANICS ON FUZZY PHASE SPACES 

In the Introduction we had defined fuzzy phase spaces 
without assuming any relationship to exist between the 
v.'s and the v;'s. However, it is clear that the quantum 
mechanical uncertainty relations will set at least some 
limitations upon the distribution of values for the v.'s 
in relation to those for the v;'s, and vice versa. A first 
result of this nature is proved in Theorem 3, which puts 
a restriction on the spectral density F(q,p) for a con
tinuous phase space representation of quantum mechan
ics satisfying either one of the two marginality condi
tions in Eqs. (1. 6). This result then leads easily to 
Theorem 4, which discusses the existence and unique
ness of continuous phase space representations of quan
tum mechanics satisfying both the marginality condi
tions in (1. 6). Theorem 4 also achieves a generaliza
tion of Wigner's resultZ

,3 (under the additional hypothe
sis of covariance under the Galilean group) mentioned 
in the Introduction and says, in particular, that no con
tinuous representations exist, on fuzzy phase spaces, 
which violate the quantum mechanical uncertainty prin
ciple. Again we defer proofs of mathematical results 
to Appendix B. We begin with some definitions. 

Definition 4: The marginal Q component of a phase 
space system of imprimitivity a is the normalized POV 
measure aQ defined on the Borel sets Al of R 3n by 

(3.1a) 

Similarly, the marginal P component of a is the nor
malized POV measure a P on R 3n defined as 

(3. Ib) 

Clearly, a Q 
(Al) is a system of imprimitivity on the 

configuration space with respect to the translations q 
in that space, while aP (Az) is a system of imprimitivity 
on the momentum space with respect to the translations 
p in that space, i. eo , 

aQ([~lq) = Utq,O)aQ(~)U(q,Ol' (3.2a) 

for all (q, 0) E~, and Borel sets ~ in R 3n; and 

a P ([Az]P) = uto,p laP (Az) U(O,Pl' (3.2b) 

for all (O,p)E~-, and Borel sets Az in R3n
• 

The POV measures aQ and aP are examples of fuzzy 
position and momentum observables. 9 Let Q and P be 
the usual position and momentum operators, respective
ly, on H for our n-particle quantum mechanical system. 
Let EQ and E P be their corresponding spectral mea
sures. Following Refs. 6 and 7 we introduce the follow
ing definition. 

Definition 5: a Q is said to be informationally equi
valent to EQ if and only if for any pair of vectors ¢, </J 

EH, the equality 
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(¢ 1 aQ(~)¢) =(</11 aQ(~)</i), 

for all Borel sets ~ in R 3n implies the equality 

for all Borel sets Al in R 3n
• 

An analogous statement defines the informational 
equivalence of a P and E P 

• 

The next theorem shows that the informational equi
valence of a Q to EQ and of a P to E P (which has to be 
imposed on physical grounds if aQ and a P are to differ
entiate between states equally effectively as E Q and E P

, 

respectively, do) automatically leads to a fuzzy-phase
space structure. In stating this theorem we limit ¢ to 
the [dense in L Z(R3n) 1 Schwartz space 5 (R3n) in order to 
insure that the integrals in (3.3) are well defined even 
if Vq and v; are not absolutely continuous with respect 
to the Lebesgue measure. However, it will be establiSh
ed in Theorem 3 that this contingency does not occur 
for continuous representations, so that for this case of 
exclusive physical interest (d. Sec. 4) one can allow 
¢ to vary over the entire space L Z(lR3nL 

Theorem 2: Let a be a phase space system of im
primitivity and a Q and a P its marginal Q and P com
ponents, respectively. Suppose a Q (resp. a P

) is in
formationally equivalent to EQ (resp. EPl. Then a de
termines a fuzzy phase space (r, v) that is Borel iso
morphic to r, and it satisfies the marginality conditions 

(¢ 1 a Q 
(Al)¢) = I.e'

1 
dq Im3n vq(dq') 1 ¢(q') 12 

(¢ 1 a P 
(Az)¢) = I",z dp IR3n v;(dp') 1 ;Pip') 1 Z, 

(3.3a) 

(3.3b) 

for all ¢ E S (R3
") , where ¢ denotes the Fourier trans

form of ¢. 

It follows, therefore, that any phase space represen
tation of quantum mechanics 7[, whose canonically as
sociated phase space system of imprimitivity has mar
ginal Q and P components which are informationally 
equivalent to EQ and E P, respectively, is actually a 
representation on a fuzzy phase space and satisfies the 
marginality conditions (1. 6). 

The question now arises as to what extent a ~ co
variant fuzzy phase space (r, v) which is Borel isomor
phic to r canonically determines an informationally 
complete phase space system of imprimitivity, and 
hence its own, possibly unique, phase space represen
tation of quantum mechanics. This question is partially 
answered in Theorem 4 below. In Theorem 3 we first 
get a restriction, to be put on the vq's and v;'s provided 
they are to come from a continuous phase space repre
sentation of quantum mechanics. 

Theorem 3: Let a be a phase space system of im
primitivity with a continuous spectral density F(q, p), 
and suppose that a Q satisfies the marginality relation 

(¢la
Q

(Al)¢) = 1"'1 dq IR 3n Vq(dq') 1 ¢(q') Iz 

for all vectors ¢ in S (R3
") and all Borel sets Al in R 3n • 

Then a Q is informationally equivalent to E Q
, the oper

ator F(q,p) is of trace class and Vq is absolutely con-
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tinuous with respect to the Lebesgue measure on Rsn, 
so that for all Borel sets ~ in R Sn 

".(~) = 1"'1 x. (q') dq', 

where X. E Ll(Rsn) for each q E RSn, and 

X. (q') = Xo(q' - q), 

for almost all q' and all q in R 3n
; furthermore, 

(q 1 F(O, 0) 1 q) = (2lT)-SnXo(q). 

(3.4) 

(3.5) 

Similarly, if a P satisfies the marginality relation 

for all ¢ E 5 (Rsn) (whose Fourier transforms are given 
by ifi), and all Borel sets ~2 in Rsn, then a P is infor
mationally equivalent to E P, the operator F(q, p) is of 
trace class and II; is absolutely continuous with respect 
to the Lebesgue measure on R 3n

• Again, for all Borel 
sets ~2 in RSn, 

x;(P') = X~(P' - p) (3.6) 

for almost all p' and all p in Rsn, and 

(p 1 F(O, 0) Ip) = (2lT)-3nx~(p). (3.7) 

We see that Wigner's theorem, in the form stated in 
Ref. 3, and under the additional hypothesis of covari
ance under the Galilean group, is already contained in 
this result, even apart from the restriction imposed 
upon F(q,p) by the uncertainty principle; for according 
to the hypothesis of that theorem a Q would have to sat
isfy a marginality condition of the type 

(¢ 1 aQ(~l)¢) = J"'l dq Jmsn f>.(dq') 1 ¢(q') 1

2dq' 

= 1", dq 1 ¢ (q) 12. 
1 

(3.8) 

However, the f> measure is not absolutely continuous 
with respect to the Lebesgue measure. In other words, 
either one of the two marginality conditions 

JRsnp(q,p) dp =(qlplq), 

Jmsnp(q,p) dq = (p 1 pip), 

is enough to preclude the existence of a continuous 
phase space representation of quantum mechanics. 

From Theorem 3 we can easily derive the following 
result, whose first part represents an extension of 
Wigner's theorem. 

Theorem 4: Suppose Xo(q) and X~(P) are nonnegative 
normalized functions from L1(RSn) whose spreads4 
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S j = [2 .!m.sn(qj - qj)2XO(q) dq]l 12, 

rj = [2 JlRsn(Pj - PYx~(P) dp J1 12, 
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(3.9a) 

(3.9b) 

exist for j = 1, 2, ... , 3n, where qj and Pj denote the re
spective mean values of qj and Pj' If sjorjo < 1, for some 
j =jo, then there exists no continuous phase space sys
tem of imprimitivity satisfying the marginality condi
tions (3.3). If 

rSi+l = r SI+2 = rSI+s "" S3~+1 = S3~+2 = S3~+S' (3. 10) 

i = 0, 1, 2, ... , n - 1, there is at least one pair Xo and X~ 
for which such a system of imprimitivity exists. When 
(3. 10) is an equality, the only such pair is 

Sn 
X. (q') = IT-Snl2 n Sjl exp[- Sj2(q; _ qj)2], (3. 11 a) 

j=l 

Sn 
x;(P') = IT-Snl2 n Sj exp[ _ sj(P; _ pj)2], (3.11b) 

j=l 

and the corresponding system of imprimitivity is unique, 
namely it is the one having the spectral denSity 

F(q, p) = (2lT)-sn 1 ¢:~l)(¢.(:ll , 
where 

Sn 
¢:sl(x) = IT-Sn 14 n Sj1/2 

• j=l 

Xexp [- (X2~t)2 +iPj (Xj - ~)]; 
furthermore, this system of imprimitivity is in
formationally complete. 

(3.12) 

(3.13) 

The above theorem is an immediate consequence of 
(3.5) and (3.7) and the well-known fact10 that there is 
no trace class operator on H which would satisfy both 
these relations if the product 2-1sj rj of its standard de
viations 2-1/2sj and 2-1/2rj in the canonically conjugate 
variables qj and Pj is smaller than one-half, while for 
the case where (3.10) is satisfied there is such a trace 
class operator, which is unique, namely (3.12), when 
(3.10) is an equality. (The equalities rSI+l = r3l+2 = rSi+S 
are a consequence of the rotational symmetry intrinsic 
to Galilean invariance.) 

Implicit in Theorem 3 is the method of construction 
of all those continuous phase space representations of 
n-particle quantum mechanics whose marginal Q and 
P components are informationally equivalent to the con
figuration and momentum representations, respectively 
(i. e., in accordance with Theorem 2, of fuzzy phase 
space representations). These representations are ob
tained by taking any density matrix Po, which is rotation
ally invariant, and writing 

a(~) = (2lT)-sn L. exp(- iPQ) exp(- iqP)po 

x exp(iqP) exp(ipQ) dq dp. (3.14) 

The resulting POV measure a(~) will obviously give 
rise to a system of imprimitivity on r, whose informa
tional completeness has to be checked in each individual 
case. In the special case of (3.12) this informational 
completeness may be deriveds by using, for example, 
the well-known analyticity properties displayed by the 
inner products of arbitrary vectors and coherent states. 
More generally if Po is of the form 

Po= 1 ¢O><¢ol, (3.15) 
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where ¢o is a vector in L2(R3n
) for which the "repro

ducing kernel" 

(3.16) 

never vanishes, then the corresponding system of im
primitivity is informationally complete. 11 

Theorem 3 also implies that if the confidence func
tions Xo(q) and X~(P) are given a priori (e. g., by the 
accuracy calibrations of a class of instruments for mea
suring Q and P), then the choice of Po will be unique if 
and only if there is a unique trace class operator F(O, 0) 
= (27T)-3npo which satisfies both (3.5) and (3.7). If Xo(q) 
and X~(P) are optimal [i. e., have minimal spreads 
(3. 10) in relation to the uncertainty principle], then this 
uniqueness is implicitly stated in Theorem 4. However, 
this uniqueness is not a feature that is common to all 
choices of Xo and X~, as can be shown by counterexamples 
(cf. Ref. 7, Sec. 2L 

4. DISCUSSION 

According to Definition 1, a phase space representa
tion of the quantum mechanics of a given system as
signs to each quantum mechanical state (i. e., density 
operator) p a unique normalized measure Jl p on r. 
There is, however, no physical input in that observa
tion as yet. One might be tempted to interpret Jlp(tl) as 
the probability of a measurement outcome (q, p) falling 
within tlC r, when the system is in the state p. But 
even if we disregard the unfeasibility of experimentally 
determining sharp values (q,p) E r, we are still left 
with a question of consistency: Since there is an (un
countable) infinity of possible phase space representa
tions, each such representation assigning, in general, 
a different value Jlp(tl) to the same set tl, for the sys
tem in the same state p, which one of these distinct 
probabilities is the" correct" one? 

Following this line of thought, one can seek a way out 
of the impasse by looking for guidance from the Q mar
ginal values Jlp(tl1 X R 3n

) and P marginal values Jl p(R3n 

X tl2) of Jlp , since that is familiar territory, where one 
is dealing with either Q measurements or with P mea
surements separately. But according to Wigner's theo
rem (contained in Theorem 4 above), no continuous 
phase space representation of quantum mechanics would 
provide us with marginal probabilities which coincide 
with the conventional ones, namely Tr[pE

Q 
(tl1)] and 

Tr[pE P (tl2)], respectively, obtained by making precise 
and separate measurements of Q alone and Palone. 
Faced with this fact, one can still persist in the attempt 
of assigning some physical interpretation to the mar
ginal values of Jl p by considering the POV measure a(tl) 
that is unambiguously attached (according to Theorem 
1) to each phase space representation, and then looking 
for probabilistic interpretations which would make its 
marginal components a Q and a P informationally equiva
lent (Definition 5) to E Q and E P, respectively. This last 
demand is certainly not only reasonable, but also man
datory, since, whatever the new interpretation, it should 
be at least as effective in distinguishing between the 
physical properties of different states as the conven
tional interpretation was. 

In carrying out this last step of the program one is 
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led to singling out from among all phase space repre
sentations a species of special ones, namely, those 
which satisfy the above mentioned criterion of informa
tional equivalence. Using Theorem 2, we arrive thus 
at the conclusion that the Q and P marginal values of 
the measure Jl p on r, assigned to p by each one of these 
special representations can be interpreted as proba
bilities for fuzzy measurements of Q and P, 
respectively. 

Armed with this fact, one can go back and reconsider 
Jl p globally (on r) for each one of these fuzzy phase 
space representations. It is then natural to interpret 
Jlp(tl) as being the probability for the outcome of a fuzzy 
simultaneous measurement of Q and P, with the system 
in the state p, to "fall within the fuzzy set tl" (cf. Ref. 
4 for details). The compatibility of such an interpre
tation with the uncertainty relations is then confirmed 
by Theorem 4, which states that there are no fuzzy rep
resentations which violate the uncertainty principle. 
Also, it follows from the analysis of fuzzy position and 
momentum operators in Ref, 6 that the fuzzy position 
operators Q associated to a Q and the fuzzy momentum 
operators P associated to a P

, 

- r. Q - f p 
Qj=.!R3 n q j a (dq), P j =JR3n jJ j a (dp), 

satisfy the same canonical commutation relations as 
do the standard (or sharp) operators Q and P, whenever 
the confidence measures Vo and v~ have finite spreads 
(i. e., whenever Q and P exist). Furthermore, an an
alysis of the operational meaning of the simultaneous 
(fuzzy) measurement of Q and P confirms the experi
mental feasibility of backing up the present interpreta
tion with empirical observations (cf. Ref. 4, and the 
references cited therein). 

Among all fuzzy phase space representations of the 
quantum mechanics of a given system, a prominent role 
is played by the optimal ones, i. e., the ones which 
correspond to confidence measures Vq and v; which have 
minimal spreads (3.10) in relation to the uncertainty 
principle. According to the second part of Theorem 4, 
such optimally fuzzy phase space representations exist 
if and only if Vq and v; are derivable from confidence 
functions x., and x;, respectively, which are the Gaus
sians in (3. 11). Furthermore, for given Vq and v; the 
corresponding phase space system of imprimitivity is 
unique-being given by the spectral density (3.12). It 
is precisely these optimal representations that have 
been studied in some detail in Refs. 4 and 5, and have 
been shown to give rise to the L 2(r) spaces which can 
be interpolated in a natural manner between the con
figuration space and the momentum space representa
tions of a given quantum mechanical system. In addi
tion, in relation to these optimal representations, the 
nonoptimal ones play the same role as a fuzzy phase 
space representation of classical mechanics plays vis
a-vis the conventional (sharp) representation (cf. Ref. 
5 for details). 

There is another very significant featUre that is 
shared by all phase space representations of quantum 
mechanics, and which establishes their superiority 
from the point of view of state resolution: the POV mea
sure a(tl) associated with any such representation (The-
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orem 1) is informationally complete, while, on the 
other hand, neither EQ (~) nor E P (~2) [and therefore, 
by Theorem 2, neither aQ(~l) nor aP(~2)] come even 
close to having this important property. Moreover, as 
shown in Ref. 7 by a counter example, not even EQ(~) 
and EP(~2) taken together are informationally complete! 
Thus, if we impose the condition that quantum mech
anical theories be not redundant (in the sense of not 
possessing states which cannot be distinguished, even 
in principle, by means of empirical observations), then 
position and momentum observations, performed sepa
rately, cannot ensure that. However, simultaneous po
sition and momentum observations do eliminate the 
possibility of redundancy, when related to p by means 
of the above discussed interpretation of J.l,(~) for fuzzy 
phase space representations. 

As a final comment, we ought to mention that our 
specialization to the case of continuous phase space 
representations, from Theorem 3 onwards, might ap
pear somewhat artificial. However, the following serves 
as a physical justification for imposing this restriction: 
By Eqs. (2.8)-(2.10) and the fact that, as a trace-class 
operator, F(O,O) has a completely discrete spectrum 
it follows that for a continuous representation 

If,(q,P) I qrF(O, 0) = (21T)-3n (4.1) 

for aU density matrices p with unit trace [cf. Eq. (3.5)]. 
Conversely, such a relationship implies the continuity 
of the corresponding representation. The physical de
sirability of the above inequality becomes apparent if 
we put back factors of Fl, for then we get 

(4.2) 

As a matter of fact, after recalling the traditional role 
of h3n in the statistical mechanics considerations of a 
system of 3n degrees of freedom12 and our interpreta
tion off,(q,P) as a probability density on (r, I), it be
comes evident that (4.2) expresses the impossibility of 
locating a quantum system in a phase space cell of vol
ume less than h3n • 

APPENDIX A 

The proof of Theorem 1 will depend on the following 
three lemmas: 

Lemma 1: The map 7T may be extended to a linear 
isometry 

7T:B d-I) -/h (r) (AI) 

which is bijective onto its image in Ih (r). (8101) is con
sidered as a Banach space with respect to the "trace 
norm" II .11 11 andlh (1') as a Banach space with the norm 
it acquires as the dual of C ~(r)-the set of all bounded, 
complex, continuous functions on l' which vanish at 
infinity.] 

Proof: Both B 1 (tf) and If! (1') are generated by their 
positive cones Bl (/-!r andlh (r)., respectively. Consider 
first 

(A2) 

Since Trp= IIPlll for PEB IW)+ and J.l(1') = II J.l 11;)1 for J.l 
EIh (1'r, and in view of the condition that 1T(Pl) = 7T(P2) 
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iff Pl =Pz, it follows that 1T is a bijective isometry of 
B IWt onto its image 1T[Bl(ht] in/h (r)+ under 7T, Hence 
7T[Bl(tW] is closed. Next, for any PEB 1W), let P=Pl 
-P2+i(Ps-P4), where Pl,PZ,PS,P4EBlW)+, We define 

(A3) 

to extend 1T to the whole ofB l (h). Then 7Tf.B l (H)]CfYi (1') 
is a closed linear subspace off!'1 (r), and so 7T extends 
to a one-to-one positive linear map from Bl(jf) onto 
1Tf.Bl (jf)]. Hence 1T is continuous, 13 and since for P 
EB1(/--!r, 111T(p) 11m = IlplIl , it follows that for all pEB1 (/-1) 

111T(p) 11;)1 ,;; Ilpll l . (A4) 

On the other hand, the inverse map 7T-1 from the 
Banach space 1T(B 1 (jf)] to B 1 01) is also continuous, being 
a positive linear map, Thus, 

(A5) 

so that 7T is isometric. 

Lemma 2: Let a be a phase space system of imprimi
tivity. Then a(~) = 0 iff ~ is of Lebesgue measure zero. 

Proof: Let 1/!1' 1/!2' •• , be an orthonormal basis of 
vectors in H, Consider the probability measure 

(A6) 

defined on the Borel sets ~ of r. Then if g is an ele
ment of the Galilean group 9, we have 

~ 1 
J.l([~]g) =E 2n <I/!nl a([~]g)I/!"> 

(A 7) 

by virtue of the imprimitivity relation (2.7). Thus, J.l(~) 
= 0 implies a(~) = 0, which in turn implies, because of 
(A7), that J..L([~k)=o, for allgEq. Hence, the null sets 
of J..L are invariant under g, and it follows that J..L is equi
valent to the invariant Lebesgue measure on r. But by 
(A6), J.l(~) = 0 iff a(~) = 0, whence the result. 

Lemma 3: Every informationally complete phase space 
system of imprimitivity a defines an isometric positive 
linear map 

(A8) 

~hich is a bijection onto its image iTf.BIW)]CLl(I'); 
1T(81 (jf)] is thus a closed subspace of the Banach space 
Ll(r), Furthermore, a has a continuous spectral den
sity iff 1T(p) defines a continuous function in L1(!') for aU 
PEB 1(jf). 

Proof: For any PEB 1(jf), consider the measure J..L,(~) 
= tr[pa(~)]. By Lemma 2, J..L,(~) is absolutely continuous 
with respect to the Lebesgue measure. Hence there is 
anfpE Ll(l'} such that 

(A9) 

and 

(AlO) 

Set 

(All) 
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By informational completeness n is one-to-one. It is 
obviously also linear and positive, and in fact, in view 
of (A10), for P EBl (fir 

IIrr(p)IILl = IIp1l1 • (A12) 

We may now prove, exactly as we did for 11 in Lemma 
1, that the isometry 1T also extends to the whole of 
13 1 (/-1). 

To prove the rest of the lemma, we show first that the 
map g - U:pUg is continuous in the trace norm topology 
of 13 1 (/-I). Let 13 (/-I) be the set of all bounded operators 
on H, equipped with the usual operator norm. Then it 
is well known14 that 13(/-1) is the dual ofB 1(/-1), so that, 
in particular, for pEB1(/-1), 

IIpill = sup 1 Tr[Ap ]1. 
"A ""'1 

AEB(HI 

Let cP, 7.J!EH and AEB(/-I>' Then, 

1 (1Ji1 [U~U; - A]cp) \ .; I (7.J!\ U~[U: - I]cp) I 

+ 1 (7.J!\[Ug-l]Acp) 1 

.;1I7.J!IIIIAIIII(Uj -1)CPIi 

+IICPIIIIAIIII(Uj -I)I/JII 

(A13) 

(A14) 

and the last expression converges to zero as g- e, by 
virtue of the strong continuity of g - Ug' From (A14) it 
also follows that the weak continuity of g - U ~Uj is 
actually uniform in A for IIAII .; 1. Thus, 

sup 1 (I/JI [UgAU: - A]cp) I - 0, g- e. 
HAllEt 

AE8(H) 

(A15) 

But since the weak and the ultraweak topologies on B (/-I) 
coincide on bounded sets, we have, for all p E81 (j-1), the 
result that 

sup ITr[(U~U:-A)p]l-o, g-e, (A16) 
IIAII:=;;l 
AEB(H) 

i. e., IIUg*pUg - plll- 0, g-e. (A17) 

Since q is a group, (A 17) proves the continuity of g 
.... UipUg at all points gEq . 

Next suppose that a has the continuous spectral den
sity F(q,p) and for any PEB 1 (j-1) definef. through (All). 
Then, by (A9) and (2.8) 

f.(q,P) = Tr[F(q,p)p], (Al8) 

so that, by (2.9) 

If.(q, p) - f.(O, 0) 1 

= 1 Tr[F(q,p)p] - Tr[F(O, O)p] 1 

= ITr[(UT.,PIPU,.,PI-P)F(O, 0)]1 

.; II UT.,PpU,q,Pl - PlllI1F(O, 0)11, (A19) 

which converges to zero as (q,p)- (0,0) by virtue of 
(A17). 

Conversely, suppose that for all p E 8 1 (j-I), f. is a 
continuous function in Ll(r). For fixed (q,p) define a 
linear functional on 13 1 (/-I) by 

p--f.(q,P)· (A20) 
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This is clearly a positive linear mapping and therefore 
defines a continuous functional on B 1 (/-I). Thus there ex
ists an operator F(q, p) in B (II)' such that 

Tr[F(q,p)p] =f.(q,p). (A2l) 

Finally (A9) implies that the relation (2.8) holdso 

Proof of Theorem l: Let 1T be a phase space represen
tation of quantum mechanics, extended to the whole of 
B 1 (j-1) by Lemma 1. Let 11(p) = 11. E/Yi (r). Then, for a 
fixed Borel set ~ in r, p,... I1p(~) is a positive linear 
functional on 8 1 (fi). Thus there is an operator a(~) 
E8Wt such that 

11.(~) = tr[a(~)p]. (A22) 

Since 11. E/Yi (r) for each p and 11.(r) = Trp, it followS15 

that ~ ..... a(~) is a normalized POV measure on r. Also, 
11(UjpUg] = (11.]g, and therefore a is a phase space sys
tem of imprimitivity. Finally, the condition 11(Pl) = 1T(P2) 
iff Pl =P2 implies that a is informationally complete. 

The converse follows upon defining 11(p) by 

[11(p) ](~) = Tr[a(~)p], 

while the rest of the theorem is a consequence of 
Lemma 3. 

APPENDIX B 

(A23) 

Proof of Theorem 2: Consider first a Q
• Since a Q and 

EQ give the same information, the von Neumann alge
brasA(aQ

) andA(E Q
) generated by them are identical. 6 

Furthermore, A (EQ) is isometrically isomorphic, in the 
C* algebraic sense, to L ~(lR3n) (i. e., the set of bounded 
Lebesgue measurable functions under the" essential 
sup" norm). Then, for I/JEH andfE C~(R3"), 

(Bl) 

where, 

aQ(j) = JJfl.3 nf(q)a Q (dq), 

and FI is some measurable function in L ~(JR3n). We show 
next that F/q) may actually be chosen to be continuous 
in q. Indeed, 

(B2) 

and 

(B3) 

for some positive number K, independent of f. 15 [The 
norm in C ~(R3n) is the supremum norm. 1 Thus, 

(B4) 

for almost all q in R3n. Let y(q)Ff denote the translated 
function 

(B5) 

Then, 

ess. sup 1 y(q)Ff(q') - F,(q') \ 
q'ER3n 

=ess.sup I Ff(q' - q) - Ff(q') I 
q'EJfl.3n 

= ess. sup 1 Fqlf1(q') - Ff(q') I , 
.'EJfl.3n 

(B6) 
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by virtue of (3. 2a), where (q[j])(q') =f(q +q'). There
fore, by linearity (B6) equals 

ess. SUD 1 F.U1_,(q') 1 
.'EIR3r11 

"" Kllq[j] - fil, (B7) 

by (B4). Since the functionf is uniformly continuous, 
the right-hand side of (B7) converges to zero as q - 0. 
Thus the map q ,... y(q)F, is continuous in the norm topo
logy of L "'(R3n) and hence16 F, may be replaced almost 
everywhere by a continuous function. We shall hence
forth assume that this has been done. 

Thus, for fixed q E R 3n, f .... F,(q) defines a positive 
linear functional on C .,(R3n), so that there exists a pro
bability measure [note that a Q (R3n) =/] v. for each q 
in R 3n such that 

(BS) 

Hence, for any Borel set ~1 in R 3n Eq. (B1) may be 
written as 

(B9) 

for almost all q in R 3n . The marginality condition (3. 3a) 
is straightforward to verify. 

To prove that the set {(q, v.) 1 q E R 3n} constitutes a 
fuzzy configuration space, we only need to verify further 
that q * q' iff v. * v." But this is obvious since the v;s 
are all probability measures on the locally compact 
space R 3n which satisfy v.(R3n) = 1 for all q E R3n. 

The construction of a fuzzy momentum space, using 
a P

, is similar. Combining the two we get the desired 
fuzzy phase space (r, v). 

Proof of Theorem 3: We first prove that a
Q and EQ 

are informationally equivalent. Indeed, the marginality 
condition 

for all ¢ E.5 (R3n) implies that the operator aQ(~) has 
the form 

(a Q (~)IP)(q) = v.(~1)IP(q) 

for all IPEH and almost all q in R 3n. Since a Q satisfies 
the imprimitivity relation (3. 2a), v. satisfies the covari
ance condition 

(B10) 

for all q E R 3n and all Borel sets ~1 in R 3n . Also, since 
v. is a probability measure, v. = v.' iff q = q'. Thus it 
follows from Theorem 2 in Ref. 6 that a

Q 
and EQ are 

informationally equivalent. 

Next let IPb IP2' ••• be an orthonormal basis of vectors 
inH and let 

N 

P N =6IIP,.)(IPnl, 1 ""N""oo. (Bll) 
~ =1 

Consider for ¢ EH the nonnegative expression, 

We observe that according to (2.9) 

227 J. Math. Phys., Vol. 18, No.2, February 1977 

I.,(¢) = fIR 3n(¢ 1 F(O,p)1» dp. (B13) 

Choosing ¢ to be of compact support, and using the 
unitarity of the Fourier transform in L 2(R3n) we get for 
N<oo , 

N 

= E (IPmIF(O, O)IPk) fR3n dp fR3ndxexp(-iPX)¢(x) 
",It =1 

x IPm(X) fR3ndy exp(ipy) IPk(Y)¢(V) 
N 

= (21T)3n .0 (IPmIF(O, O)IPk) f
IR

3n l ¢(X) 12 IPk(X) 
m,l:=l 

x IPm(X) dx. (B14) 

If ¢1> ¢2' ... E L2(R3n , dx) is a sequence of continuous 
functions of compact support for which .. 

[) 1 ¢1(x)j2=l, (B15) 
1=1 

then we have by (B14), 
.. N 

'£ IN(¢I) = (21T)3n 'L (IPk I F(O, 0)1).).). (B16) 
1=1 k=1 

Since (IPk I F(O, O)IP~) ~ 0, the above expression increases 
monotonically as N - 00. On the other hand, by (B14) and 
(B15) 

.. .. 
'L IN(¢I) = 1 3n dp [) (exp(iPQ)¢11 PNF(O, O)PN 
1=1 IR 1=1 

(B17) 

We shall prove later that F(O, 0) has no continuous spec
trum. Consequently, by chOOSing {IPJ to consist of eigen
vectors of F(O, 0) we achieve that 

PNF(O, O)PN "" F(O, 0), N = 1,2,3, .... (B1S) 

Thus, by Lebesgue's dominated convergence theorem, 
in the limit N - 00 the expression (B17) converges to 

00 

f
R

3n dP.0 (exp(iPQ)¢11 F(O, 0) exp(iPQ)¢I) 
1=1 

00 

=.0 f
IR

3n(¢,1 F(o,p)¢I) dp 
101 

(B19) 

so that the series in (B16) converges in the limit N - 00, .. 
'L (IPk 1 F(O, O)IPJ = (21T)-3n f R3n vo(dx) 
ko1 

(B20) 

Since F(O, 0) ~ 0, the above sum is independent of the 
chosen orthonormal sequence IP1' IP2' .. '. Hence we con
clude that F(O, 0) is of trace class (cf. Ref. 10, Chap. 
II, Sec. 11), and has a spectral decomposition of the 
form 

F(O, 0) =[) IIPJ-\.(IPkl, Ak ~ 0, (B21) 
k 

[)-\.=Tr[F(O,O)]. (B22) 
k 

Inserting this result in (B14) and letting N - 00 we ob
tain for all ¢ E 5 (R3") 
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Jm3n (cp \ F(O, P ) cp) dp = (27T)3n J (q' \ F(O, 0) \ q') 

x\cp(q')\2dq'. 

On the other hand, according to (3. 3a) 

(B23) 

(B24) 

It follows that the right-hand sides of (B23) and (B24) 
must be equal for arbitrary cp E.s (R3n

) so that /)0 has 
density 

Xo(q') = (27T)3n(q' I F(O, 0) I q') 

with respect to the Lebesgue measure and, therefore, 
(30 5) must be true. 

This completes the proof of the first half of Theorem 
3, with the exception of the claim that F(O, 0) has a pure 
point spectrum, which was used when we argued that 
(B18) could be satisfied by an appropriate choice of the 
vectors 01, 02, .... 

To verify that this claim is true, we note that the 
positive-definiteness of F(O, 0) implies by itself that 
F(O, 0) has a spectral decomposition of the form 

F(O, 0) = Jo ~ AdE~. (B25) 

For every integer k, let 

(B26) 

so that, 

(B27) 

is a positive definite operator with a pure point spec
trum, and 

Fk",F(O, 0), k=1,2,"', 

IIF(O, 0) - Fkll '" k-1
• 

Define now, in analogy with (B12) 

We note that because of (B28), 

(B28) 

(B29) 

I~)(cp) "'I~(cp) <00, (B3i) 

so that the entire argument used in deriving (B16) and 
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(B17) can be repeated verbatim to derive analogous 
relations for "[,1 I}k)(cp/)' In these relations, however, 
the role of F(O, 0) is taken over by Fk • On the other 
hand, Fk is constructed in such a manner that it does 
have a pure point spectrum, and therefore, a choice of 
an orthonormal basis 0t), 0t), ... can be effected so 
that 

(B32) 

would hold true. Hence we conclude that Fk is of trace 
class. Since, according to (B29), F(O,O) is the uniform 
limit of Flo F 2, •• " it follows that F(O, 0) is a compact 
operator. This establishes the fact that F(O, 0) must 
have a pure point spectrum, and concludes the proof of 
the first half of Theorem 3. 

The second half of this theorem is proven in exactly 
the same manner by working in the momentum rather 
than the configuration representation. 
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On the definition of scattering subspaces in non relativistic 
quantum mechanics 

John D. Dollard 
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A physi.caJly motivate.d de~nition of scattering subspaces is given for problems in nonrelativistic quantum 
mechamcs. The defimtlOn IS more stringent than earlier similar definitions. It is applicable to potential 
scattenng and to nobody problems. 

INTRODUCTION 

Recently, some attempts have been made1 ,2 to give a 
physically intuitive characterization of scattering sub
spaces for quantum-mechanical systems. For a non
relativistic quantum-mechanical particle, which is de
scribed by a normalized element of L 2 (R3), the charac
terizations essentially say this: Let H be the Hamiltonian 
for the particle and let En denote the ball of radius n 
about the origin in R3. Let </J E: L 2(R3). Then </J is in the 
positive time scattering subspace if and only if for each 
n= 1, 2, 3, ... we have 

lim .kJ [exp(- iHt)</J](x) 12 dx= O. 
t _+00 

(1) 

(We work with units in which fi= 1.) The negative time 
scattering subspace is defined similarly, with +00 being 
replaced by - 00 above. The interpretation of this defini
tion is simple: If </J is normalized, then 1 [exp(- iHt)</J] 
x (x) 12 is the position probability density at time t for 
the particle which has state </J at time t = O. Thus Eq. 
(1) says that the probability for finding the particle in 
En approaches zero as t - + 00. If this is true for all n, 
then it is asymptotically correct to think of the particle 
as being" far" from the origin. This permits one to 
think of the particle as being asymptotically outside the 
range of a center of force (presumably localized near 
the origin) and hence in some sense "free." However, 
our knowledge of the behavior of free quantum-mechani
cal particles is quite detailed, and it is legitimate to 
ask in what sense the behavior described by a </J in the 
scattering subspace above apprOXimates the usual be
havior of a quantum-mechanical free particle. We now 
discuss this point. (The discussion will be partly heu
ristic. Strict mathematical argument will begin in Sec. 
I.) 

One feature of the behavior of a quantum-mechanical 
free particle is this: Not only does it flee the origin in 
the sense described by Eq. (1), but one can make state
ments about the manner in which it flees. It would not 
be correct to say that the particle asymptotically flees 
with a fixed radial velocity, because of course the par
ticle will have a spectrum of possible velocities. What 
is correct is to say that the integral over all vr of the 
probability for asymptotic flight from the origin with 
radial velocity Vr is unity. Intuitively this is because 
the component of the wavefunction corresponding to 
(unchanging) velocity v will asymptotically represent 
departure from the origin with fixed radial velocity Vr 

equal to the magnitude of v, and integrating over all 
velocities accounts for all possible motions of the par-
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ticle. Since the probability for vr to be exactly zero will 
be zero, we can say that the integral of the probabilities 
for all velocities Vr other than z era must be unity. Thus 
the free particle will flee the origin with some nonzero 
velocity, although this velocity may be quite small. We 
shall refer to this type of flight from the origin as flight 
with velocity. If we now think of an interacting quantum
mechanical particle, then the velocity of such a particle 
will not be constant, so the above definition of flight 
with velocity is not applicable, but it is easy to repair 
this by thinking of the average radial velocity of the 
particle in a given time intervaL If the particle does 
asymptotically become free, then its velocity should 
eventually approach a constant value, and (thus) so 
should its average radial velocity. For each vr we can 
compute the probability that the asymptotic average ra
dial velocity will be v" and if the integral of all these 
probabilities (excluding the point Vr = 0) is unity, we 
will describe the behavior of the particle as asymptotic 
flight with velocity. (Remark: exclusion of the point 
Vr = 0 is now significant. If the wavefunction of the par
ticle in question is a bound state, then the asymptotic 
average radial velocity of the particle will be zero with 
probability one, representing no flight from the origin 
at all. Thus it is now a nontrivial requirement to ask 
that the integral over all probabilities excluding the point 
vr = 0 should be unity.) 

In the definition of scattering subspaces given in Eq. 
(1), no attempt is made to characterize the manner in 
which the particle in question leaves the origin. The 
departure could become more and more leisurely as 
time goes on, representing a behavior uncharacteristic 
of asymptotically free particles. In this paper we at
tempt to sharpen the definition of scattering subspaces 
by capturing mathematically the notion of asymptotic 
flight with velocity and defining the scattering subs paces 
to be the collections of wavefunctions </J such that 
exp( - iHt) </J exhibits asymptotic flight with velocity. If 
</J belongs to a scattering subspace as so defined, then 
the particle described by exp( - iHt) </J can be more con
fidently described as "asymptotically free" than particles 
concerning which it is only known that eventually they 
escape from any bounded set. By comparison with the 
usual time-dependent nonrelativistic potential scattering 
theory, we shall see that our subspaces coincide with 
the standard scattering subspaces in familiar cases. 

I. DEFINITION OF THE SCATTERING SUBSPACES 

Our entire discussion will be carried out within the 
framework of nonrelativistic quantum mechanics in 
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Hilbert space. We shall give definitions and theorems 
for the case t - + 00. The corresponding definitions and 
theorems for the case t - - 00 can be obtained from our 
discussion by making obvious replacements, as we oc
casionally note. 

We consider a nonrelativistic particle of mass m with 
self-adjoint Hamiltonian H acting on the space L 2(R3) of 
complex-valued functions square-integrable over three
dimensional Euclidean space. The form of H is not im
portant for now. In quantum mechanical discussions it 
is slightly more natural to deal with momentum than 
velocity, and we shall construct the scattering subspace 
by discussing the momentum rather than the velocity of 
the particle. Naturally the two differ only by the factor 
m. Now a particle starting from the origin with momen
tum k will be on the sphere of radius ktlm after time t. 
(k denotes the magnitude of k.) We set k = lin where 
n is a positive integer, and for 1)! E L 2(R3) we define 
111)!1I snt (s stands for" scattering") by defining its square, 

(2) 

For a normalized 1)!, the number 111)!II~nt is the probability 
that the particle with wavefunction exp(- iHt)1)! will be 
found outside the sphere of radius tlnm at time t, and 
we can think of this number as measuring the probability 
that the particle was fleeing the origin with average ra
dial momentum exceeding lin during the time interval 
[0, tl. (Of course, the particle was not at the origin at 
time t = 0, but would be essentially localized in some 
sphere about the origin. If t is large enough so that tl 
nm is much greater than the radius of this initial sphere, 
then our statement about the interpretation of 111)!II;nt is 
justified.) The number IllPlI~t may not have a limit as 
t - + 00, but it will have an inferior limit, which we de
note by IllPlI~: 

111)!II~n= lim 111)!II~nt. (3) 
t ... ~ 

Following the interpretation above, if lP is normalized, 
then 111)!II~n can be regarded as a lower bound for the 
probability that the particle with wavefunction 
exp(- iHt)1)! was fleeing the origin with average radial 
momentum exceeding lin during the infinite time inter
val [0,00). We shall not attempt to decide whether the 
probabilities for asymptotic flight with various average 
radial momenta actually become constant for large posi
tive time t, as suggested in the partially heuristic in
troduction. Instead, we shall build the concept of flight 
with velocity on the numbers defined in Eq. (2), which 
give an unambiguous description of the actual motion of 
the particle and clearly provide the kind of information 
we are looking for. Observe that 

(4) 

so that the sequence IIlPlI~ has a limit as n- oo • We write 

111)!11~= lim 111)!II~n' (5) 
n- ~ 

If now 1)! is a normalized function and if 111)!1I~ equals unity, 
we will say that the flight from the origin described by 
exp(- iHt)<P is flight with velocity, since III/JII~ is a lower 
bound for the probability that the particle fled the origin 
with some nonzero average velocity. We have aVOided 
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inclusion of zero velocity by considering only states 
whose average radial momentum exceeded lin for some 
n. 

We now define the positive time scattering subspace 
H~ as follows: 

H;'={I/'EL2(R3)11I1)!1I~=1I1)!1I2}o (6) 

The companion subspace frsc is defined using the condi
tion x ~ I t I Inm in Eq. (2) and the limit as t - - 00 in Eq. 
(3). We now justify the terminology" subspace. " 

Theorem 1: h'sc is a closed subspace of L 2(R3) . 

Proof: We give the proof for H~. H~ is obviously 
closed under scalar multiplication. To prove closure 
under addition, we define for I/' E L 2(R3) the numbers 
(b stands, somewhat optimistically, for "bound") 

111)!lltnt = 111)!lIz - 111)!II~nt = .L"'t /nm I (exp(- iHt) I/'l(x) \ 2 dx. 

We define 

We also put 

111)!llg= lim 1I1/'11~n= 111)!112 -1I1)!11~ 

so that 

(7) 

(9) 

lPEH'sc <=> IllPllt= 0. (10) 

Now the number 1I1)!ll bn t> by its definition in terms of the 
integral in Eq. (7), has some properties of a Hilbert
space norm. In particular it satisfies the parallelogram 
law. Thus we have 

II <Pt + <Pzll~nt ~ II lP1 + 1)!211~nf + Illh - 1)!2\\~nt 

=21IM~nt +2111)!2I1gnt. (11) 

If 1)!1 and 1)!& are in h;' and thus satisfy the right-hand 
condition of the equivalence (10), then by Eq. (11) we 
have 

11<Pt + 1)!21Itn= lim 111)!1 + 1)!zll~nt 
t ... +.0 

~ 2lim 111)!1 + 1)!&II~nt + 2lim l11)!zll~"t (12) 
t .. +.0 t ... +QO 

so that 

II <Pt + 1)!211~ ~ 2111)!111~ + 2111)!211~ = 0, (13) 

and <Pt + 1)!z EH~. Thus H;' is closed under addition. To 
see thatH;' is a closed subspace of L z(R3), let 1)!1 EH';", 
1 = 1, 2, .. " and let 1)!, converge strongly to <p. Using 
some obvious properties of 111)!lI bnt> we have for any I 

(14) 

Thus 

111)!ll b= lim lim 111)!lI bnt "" III/'-lPlll for any l, (15) 
n" OCI t .. +.0 

so that the left-hand side of Eq. (15) must be zero, and 
1)! EH;". This completes the proof. 
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The scattering subspaces H"sc are defined in terms of 
the asymptotic behavior of the function exp(- iHt)<P. Thus 
if <p EH"sc and u is a real number, exp(- iHu)</i should be
long to H"sc, since exp(- iHt)<P and exp[ - iH(t + u) l<p will 
have similar asymptotic behavior. Thus H"sc should be 
invariant under application of exp(- iHu) for all real u, 
which is equivalent to saying that the subspace H"sc 
should reduce the Hamiltonian H. 

Theorem 2: The subspaces H':.c reduce the Hamilton H. 

Proof for H~: Let u be a real number, and suppose 
<p EH~. If u? 0, then 

Ilexp(- iHIMII~nt = LEt Inm 1 [exp(- iH(t +u»<Pl(x) 12 dx 

= L (T-ul/n) [exp(- iHr) <pl(x) 12 dx, 

(16) 
where r=t+u. Thus 

(17) 

Now the superior limit as t - + 00 of 11<PII~n(t+u) is identical 
with that of II <P1I~nb so 

Ilexp(- iHu) <PII~ = lim lim II exp(- iHu) <P11~nt 

..; lim lim II <P11~n(t+u) = II <Pllg = 0, (18) 
n" -0 t .. +-0 

so that exp(-iHu)<PEH~. If u< 0 then (16) still holds but 
r- u > r so that (17) is false in general. However, re
placing n by 2n in (16), as soon as r is greater than 1 u 1 
we have 

r-ll r 
--..;
(2n)m mn 

and hence 

Ilexp(- iHu) <pllg (2n)t ..; i"'TIJ [exp(- iHr) <f!](x) 12dx 

= 11<PII~nT' 

Arguing as above, we have that 

lim lim lIexp(- iHu)<f!II~(2n)t = 0 
n".o t .. +«1 

and since the limit as n- oo of limt_+ellexp(-iHu)<f!IISrtt 

(19) 

(20) 

(21) 

is known to exist, this limit must also be zero, so again 
exp(- iHu)<P EH's.:, completing the proof. 

Since the subspaces h'sc reduce H, it is natural to con
sider the properties of the spectrum of H in H!,. Because 
of their interpretation, the subspaces H':.c should certain
ly be orthogonal to the subspace Hpp containing the "pure 
point" spectrum of H, i. eo, the subspace spanned by 
the bound states (eigenfunctions) of H. This is in fact 
the case, and it follows that the parts of H in H"sc have 
continuous spectrum. 

Theorem 3: The subspaces h"sc are orthogonal to the 
subspace H pp spanned by the bound states of H. 

Proof for H's.:: We will show that if <P Eh>,., then <P 
satisfies the condition expressed by Eq. (1). The con
clusion of the theorem then follows from a theorem of 
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Wilcox (Ref. 1, Theorem 2.1). Let <P EH"sc and let land 
n be positive integers. As soon as t is large enough so 
that l..; limn, we have 

(22) 

Thus 

lim Lzl[exp(- iHt)<P](x) 12dx,,; lim II <Pllgnt = 11<PII~n (23) 
t .. + 10 t .. + 010 

and since this holds for all n = 1, 2, 3, ... we have 

lim Ix",z 1 [exp(- iHt)<P 1 (x) 12 dx,,; lim II <P11~n = II <PII~ = o. (24) 
t .. +.0 n".o 

Thus <P satisfies the required condition, and we are done. 

II. CONNECTION WITH USUAL SCATTERING THEORY 

To establish the connection of the subspaces H':.c with 
the usual formulation of scattering theory, we first take 
H to be the free Hamiltonian Ho = - .:l/2m where .:l is 
the (natural self-adjoint extension of the) Laplacian op
erator. We will verify some results that are easy to 
anticipate. As in Ref. 3 we write 

exp(- iHot) = CtQt, (25) 

where 
(QtCP)(x) = exp(imx2/2t)cp(x) (26) 

and, letting cP denote the Fourier transform of cP, C t is 
defined by 

(Ctcp)(x) = (mlit)312 exp(imx2/2t)(j(mxlt). (27) 

Then for <P E L 2(R3) we have 

11<PII~t = Ix.,t Inm 1 [exp(- iHot) <P l(x) 12 dx 

= Ix.,tinm 17 \ 31 (Q;'$) (~X) 12 dx. (28) 

Letting k= mxlt, we have 

(29) 

Now Qt clearly converges strongly to 1 as t - +00, and 
as a result 

11<PII~n=limll<Pll~t= l.,1/nl ¢(k) 12dk. (30) 
t .. +.0 

Since 1 ~(k) 12 is the momentum probability density for 
the particle, III/> lI~n is just the probability that the particle 
has magnitude of the momentum exceeding lin, in ex
act correspondence with our earlier interpretation. 
(Note that if a particle has momentum k, then asympto
tically its radial momentum is the magnitude k, so 
1I<PII~n is the probability for asymptotic radial momentum 
exceeding lin.) We also have for any <peL 2(R3) , 

lim II <PII~ = iR 31 ~(k) 12 dk= 11<f!112, (31) 
n- e 

so that I/>EH~. The corresponding argument also applies 
to H~, so that 

H"sc =L 2(R3), (32) 

as expected. 
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Next let us consider a theory with a Hamiltonian H 
such that the MdUer wave matrices W. exist, where 
W. is defined by 

W. = s-lim exp(iHt) exp(- iHot). (33) 
t __ teo 

We denote by R' the range of W.. If <p E R+, then as 
t - + 00 the wavefunction exp( - iHt) <p converges strongly 
to exp(- iHot)W±<P (see Ref. 3), so that 

= lim .L~t 1m" 1 [exp(- iHt)<P](x) 12 dx 
t ~+eo 

= lim .L~t I tim 1 [exp(- iH ot) W+<P ] (x) 12 dx 
t ... +eo 

= l~l/n 1 (lV;IjJ)(k) 12 dk. (34) 

Thus 111jJ11;n is just the probability that the asymptotic 
freely propagating state exp(- iHot) W.1jJ will have magni
tude of momentum exceeding lin. This is just what 
might have been expected intuitively. Clearly we also 
have 

so that IjJ E H~. Similar remarks apply to functions 
IjJ E R-, so that we can conclude 

R±,=H~. 

(35) 

(36) 

In particular, if the theory is asymptoticaUy complete 
in the strong sense, so that 

+ - HJ. R =R = PP' (37) 

where ~ denotes orthogonal complement, then because 
H"sc is orthogonal to Hpp , we have 

H• • HJ. ",=R = pp. (38) 

For conditions under which the Mdller wave matrices 
exist or under which the theory is complete in the strong 
sense, see Refs. 4 or 5. 

It can be shown that in the case of a Coulomb potential, 

(39) 

Eq. (38) still holds. In this case, the subspaces f,;c 
are defined exactly as before. The definition of the 
subspaces R' requires some modification, because 
the usual. M6Uer wave matrices of Eq. (33) do not 
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exist. 4 However, if the MdUer wave matrices are de
fined as in Ref. 4 making use of a "distorted" free 
Hamiltonian, then it is found that Eq. (37) holds and 
that for IjJ E R± the asymptotic behavior of exp( - iHt) <P is 
enough like that of a free particle so that the above argu
ment leading to Eq. (38) can be pushed through without 
substantial modification. Similar remarks apply to the 
case of a Coulomb-like potential (short-range plus 
Coulomb) when the theory is known to be asymptoticaUy 
complete. (See Ref. 5.) Thus we have found a definition 
of scattering subspaces which is physicaUy intuitive and 
which reproduces the usual scattering subspaces both 
for short-range and Coulomb potentials. Even in theo
ries in which the existence of the M611er wave matrices 
is in question, one can be confident that the elements 
of these subspaces represent particles which flee the 
origin in somewhat the same manner as free particles. 

As a closing remark, we note that the above definition 
of scattering subspaces can be transferred to the setting 
of n-body scattering processes, If there are static po
tentials at the origin, so that center-of-mass momentum 
is not conserved, one merely replaces the variable x 
in Eq. (2) by the center-of-mass coordinate for the n 
particles, and replaces R3 by R3n

• The number II <P11~"t 
then gives the probability that during the time interval 
[0, t], the center of mass of the n-body system was flee
ing the region of the static potentials with an average 
radial momentum exceeding lin. The number 111jJ1I~ 
should equal unity (for a normalized 1jJ) only if at least 
some of the component particles of the system asympto
tically flee the static potentials with velocity, in which 
case it makes sense to say that scattering is being de
scribed. If there are no static potentials present then 
one must factor out the center-of-mass coordinate in 
the well-known way, with a corresponding modification 
of Eq. (2). In any case, one then has a description of 
the n-body scattering subspace in which it is not neces
sary to mention explicitly the various channels of the 
system. 
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A new family of solutions of the Einstein field equations 
Frederick J. Ernst 

Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 
(Received 22 March 1976) 

An ordinary differential equation is presented, from solutions of which may be constructed solutions of the 
Einstein field equations. The study of these solutions may shed light upon the still obscure systematics of 
the Tomimatsu-Sato spinning mass fields. 

In this author's formulation 1 of the stationary axially 
symmetric gravitational field problem, solutions of 
Einstein's vacuum field equations are constructed from 
complex solutions of the single nonlinear field equation 

(Re[)'\72
[ = '\7[. '\7[. 

Until now it appears to have escaped notice that this 
equation has solutions of the form 

[ =r"Yk(cose), 

(1) 

(2) 

where r, e, ¢ are spherical polar coordinates, and the 
function Yk(y) satisfies the ordinary differential equation 

(3) 

which has not yet been solved in complete generality. 

Employing the well-known symmetry group2 of Eq. 
(1), one can construct from solutions of the form (2) 
solutions of a more general nature. Furthermore, since 
these spacetimes possess not one but two commuting 
Killing vector fields, the method of Geroch3 may be 
employed to generate additional vacuum spacetimes. 
Thus, the solution of the ordinary differential equation 
(3) provides many vacuum spacetimes. 

Thus far we have enjoyed only limited success in 
solving Eq. (3). It should be observed that it is unnec
essary to consider separately solutions with k <0, for 
if [ is a solution of Eq. (1), then so is [-1. When k = 0 
the real and imaginary parts of the complex potential 
[ are functionally related. Therefore, the complete 
solution for k = 0 is implicit in the work of Papapetrou. 4 

When k = 1 there is a trivial subcase in which 1m Y1 

= const. The corresponding spacetimes are not station
ary but static, and were anticipated in the work of 
Lewis. 5 To construct new stationary solutions one must 
turn to other values of k, or if k = 1, then demand that 
1m Y1 '* const. 

Efforts to find the general solution of Eq. (3) may be 
spurred on by the observation that a series of specific 
solutions can be constructed without inordinate difficul
ty. These particular solutions may be expressed in the 
form 

(4) 

where p2 +q2 = 1, Dk = Nt_u and the Nk are the following 
polynomials: 
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NO =1, 

N1 =pv +(iq)w, 

N2 = p 2V3 + 3p(iq )v2w + 3p(iq )vw2 + (iq)2 w\ 

N3=p3V6 +6p2(iq)v5w + 15p2(iq)V4W2 +10[p2(iq) +p(iq)2JV3W3 

+ 15p(iq)2 V2W4 + 6p(iq)2 vw5 + (iq)3 w 6
, 

N4=p4V10 +10p3(iq)v9w +45p 3(iq)V8w2 +10[7p3(iq) 

+5p 2(iq)2JV7W3 +35[p3(iq) +5p 2(iq)2JV 6W4 

+252p 2(iq)2 V 5W5 +35[5p2(iq)2 +p(iq)3jv4w 6 

+ 10[5p2(iq)2 + 7p(iq )3JV3W 7 + 45p(iq)31/W 8 

+ 1 Op(iq)3 vw9 + (iq)4 w 10 , 

N5=p5V15 + 15p4(iq)V 14W +105p4(iq)V 13W2 

+ 35 [8p 4(iq) +5p3(iq)2]V 12W3 + 105 [3p4(iq) 

+10p3(iq)2JVllW4 + 21 [6p4(iq) + 137p3(iq)2]V10W5 

+35[129p3(iq)2 + 14p 2(iq)3JV9W6 +45[94p3(iq)2 

+49p2(iq)3]V8W7 +45[49p3(iq)2 + 94p 2(iq)3]V7W8 

+35[14p3(iq)2 + 129p2(iq)3JV6W9 +21[137p 2(iq)3 

+ 6p(iq)4JV5W10 + 105[10p2(iq)3 + 3p(iq )4JV4Wll 

+ 35 [5p2(iq)3 + 8p(iq )4JV 3W 12 + 105p(iq)4 V2W13 

+ 15p(iq)4 VW 14 + (iq)5 W15 , 

where v=(1 +y)/2 and w=(1-y)/2. 

The spacetime corresponding to Y2 is a good approxi
mation6 to the 6 = 2 Tomimatsu-Sato (T-S) field near 
its poles. The spacetimes corresponding to Y1 - Y4 also 
result from contractions7 performed upon the Kerr and 
T-S solutions. Presumably the spacetime correspond
ing to Y5 could be obtained by a contraction performed 
on a yet-to-be-constructed T-S field. Note, however, 
that it would be easier to construct Y k for much higher 
values of k than it would be to construct the 6 = 5 T-S 
solution. One may even hope to infer from the early 
members of the series the form of Nk for an arbitrary 
value of k. It is obvious, for example, that the coeffi
cients in Nk are closely associated with the binomial 
expansion of (v +w)K, where K=k(k +1)/2. 

CONCLUSIONS 

It would be very encouraging if one were to discover 
how to solve the ordinary differential equation (3) in 
complete generality. There is some evidence6 that the 
particular series of solutions presented in this paper 
may be relevant to the study of the singularity struc
ture of the T-S spinning mass fields. Furthermore, 
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the relative simplicity of our series of solutions of 
Eq. (1) suggests that one may sooner comprehend the 
systematics of this series than the systematics of the 
T-S series of solutions, to which our series is so 
closely related. The eventual discovery of a more 
direct method of generating the T-S solutions may open 
the door to the discovery of yet other types of spinning 
mass solutions, just as the developmentI of a direct 
method of generating the Kerr solution led to the dis
coveryB of the Tomimatsu-Sato series of solutions. 
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Percolation theory on directed graphs 
D. K. Arrowsmith and J. W. Essam 

Department of Mathematics, Westfield College, University of London, England 
(Received 16 March 1976) 

The pair connectivity p., of a directed graph G between vertices u and v is the probability that there is a 
path from u to v when each edge and vertex has a given probability of being deleted, deletions being made 
independently. We consider the coefficient ct in the expansion p.,( G) = ~A"A 11.,( G') na , A' Pa IIw , v Pw, 
where A and V are respectively the arc and vertex sets of G, and Pa(Pw) is the probability that the arc a 

(vertex w) is not deleted, G' is the arc set A' together with its set of incident vertices V, It is shown 
that 1..< G') is nonzero if and only if G' is coverable by some set of (directed) paths from u to v and 
has no circuit. When these conditions are satisfied, 1.,( G') = (-l)r., + 1 where the number of independent 
paths from u to v is t.,. Moreover, t., is shown to have the value of v( G)+ 1, v( G) being the cyclomatic 
number of the graph G. 

1. INTRODUCTION 

The pair connectedness for undirected graphs has 
been conSidered previously. 1 The present work general
izes results to the directed case and the relation be
tween the two cases is discussed. In particular, it is 
shown that the coefficient duv(G) for an undirected graph 
G is given by 

where D(G) is the set of directed graphs obtained by 
dire£ting G in all possible ways. The coefficients d uv 
and duv will be known as undirected and directed d
weights respectively and the suffices representing the 
root pOints will not always be made explicit. 

The pair connectedness determines other properties 
of this graph. For example the expected number of 
vertices which may be reached from u is 

where V is the vertex set of G. 

Both P uv and Su are of interest in the theory of ferro
magnets2 where V is the set of spins located at lattice 
sites and the edges are the possible interactions. P uv 
is related to the spin-spin correlation function and S u 

to the susceptibility. 

Another application is to blocking probabilities in 
telephone networks3

,4 where the vertices are the 
switches and the edges are the lines connecting them. 
A deleted edge corresponds to a busy line, a deleted 
vertex corresponds to a blocked Switch, and the com
plement of P uv is the probability of a call from u to v 
being blocked. The nature of the switches in a multi
stage network means that the graph must be directed, 
although alternative networks which may be undirected 
have been recently conSidered. The assumption of in
dependent deletions which is basic to the percolation 
model is not valid in a telephone network Since whole 
paths become busy simultaneously. However, the theory 
serves as a first approximation which is good for low 
traffic densities. 
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2. PRELIMINARY DEFINITIONS AND FORMULAS 

ConSider a graph G which has a vertex set V and an 
edge set E in the undirected case or arc set A in the 
directed case. Let POI denote the probability that a 
particular element (JI of the graph is not deleted and 
deletions are assumed to be made independently. Let 
5uv be the set of all self-avoiding paths from u to 1). A 
path must follow the arrows for a directed graph. The 
probability that at least one path from u to 1) remains 
in the partially deleted graph is given by inclusion and 
exclusion. 

p. (G) = t (_1)r+1 L: pr{S}, 
v r=l sr;:5 

Uv 
IS I=r 

(2.1) 

where n is the number of self-avoiding paths between u 
and v. If g(S) is the subgraph obtained by taking the 
union of all paths in S we may rearrange the sum in the 
form 

P (G)= L, d (G') n P n P 
Uv E'CE UV eEE' e wE V' W 

(2.2) 

when G is undirected, or as in the abstract when G is 
directed, (i. e., d is replaced by d and the edge set E' 
is replaced by the arc set A'), G' is the graph with edge 
set E' and vertex set V' which consists of the subset of 
V incident with E'. In both the directed and undirected 
cases 

d (G')= L: (_1)151+1 
Uv s~Suv • 

g(S).G' 

(2.3) 

If g(S)=G', S is said to cover G'. Clearly d(G') and 
d(G') are zero when G' is not coverable by paths (e. g., 
if G is disconnected). 

It has been shown that5 the d-weights satisfy a dele
tion-contraction rule 

(2.4) 

which enables them to be calculated recursively. The 
graphs GY and G6 are obtained from G by contracting 
and deleting any edge of the graph. In order to establish 
our main result we shall require a similar result for 
directed d-weights. The rule is most easily established 
from a different formula for d(G). Thus with Pe =Pw = 1 
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in (2.2) 

yuv(G)= 6 dUV(G ' ), 
A'~A 

(2.5) 

where y(G) is one if there is a path from u to v on G, 
and zero otherwise. Since the set of all subsets of the 
arc set A form a lattice, (2.5) may be inverted6 to yield 

d (G)= 6 (_1)IA\A'l y (G ' ). (2.6) 
tAv A'~A Uu 

Now consider a particular arc a EA and divide the 
Sum (2.6) according as a EA I or not, 

duv(G) = L + L: . (2.7) 
A'~A A'CA 
aEA' aiEA' 

The subsets in the first sum are in one-to-one corre
spondence with those of A r. If (condition A) a either 
leads out of a Source (vertex with in-degree zero) or 
into a sink (vertex with out-degree zero), then yuv(A ,) 
is the same for both G and Gr. Thus in this case 

A'~A (_l)IA\NIYuv(G')=duv(GY). (2.8) 

aEA' 

Notice that if condition A is not satisfied, then the 
contraction of a may introduce paths in Gr with no 
corresponding one in G. This is not the case for un
directed graphs and (2.4) applies to any edge. 

Similarly the subsets A ' in the second sum are in 
one-to-one correspondence with those of A ~, and y(G ') 
is always unchanged by deletion since a $:A'. Thus 

L: (_l)IA\A'l y (G')=d (GO) (2.9) 
A'CA 'AU UV 

atA' 

and finally subject to condition A 
.. ) - r .. 6 
duv(G =duv(G ) -duv(G ). (2. 10) 

The d weight of a rooted graph is a topological in
variant since it is unchanged by the insertion of vertices 
of degree two. 1 Another topological invariant k(G), this 
time for an unrooted graph, may be obtained by consid
ering the expected number of independent circuits 
(closed paths), thus 

(dG» = 6 k(G ' ) II Pa II Pw (2.11) 
A'~A aEA' wE Y' 

with a similar formula for the undirected case. 7 For 
the undirected problem 

e(G) = II(G), 

the cyclomatic number3 which is defined by II(G) 
= I E I - 1 VI +n(G), where n is the number of compo
nents in G. For the directed case this is only true for 
strongly connected graphs. 8 Setting Pa=Pw = 1 in (2.11), 

(2.13) 

and on inversion 

k(G)= L (_l)IA\A'Ic(G'). 
A'~A 

(2.14) 

The properties of the Uk-weights" may be deduced 
from those of the d -weights by the device of adding an 
extra edge (arc) connecting the root pOints to form a 
derived graph. Thus let G be a graph with root pOints 
u and 1J and let G be the derived graph. In the directed 
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case the extra arc a is from v to u. Now 

k(C) = 6_ (_l)IA\kl c(G ' ) 
A'~A 

= L_ (_l)IA\A'1 dG') + 6_ (_l)IA\A'1 e(G') 
A'~A A'CA 
aEA' a <["A' 

where y(G') is one if there is a path in G' from u to v, 
since then the addition of a increases the number of 
independent circuits by one, but zero otherwise. Com
paring this with (2.6), we obtain the desired relation 

(2.16) 

which also clearly holds for the undirected weights. 1 

The undirected k weight is related l to the topological 
invariant {3 defined by Crapo9 by 

k(G) = (_1)c!G )+l (i.G), (2.17) 

3. STATEMENTS AND PROOFS OF RESULTS 

The d-weights of directed and undirected graphs are 
related as follOWS. 

Theorem 1: The undirected d -weight of a graph Guv is 
equal to the sum of the directed d-weights of Guv over 
all possible orientations. 

It remains to classify the properties of directed 
d -weights which are given in the following results. We 
omit the trivial case of a noncoverable graph where the 
directed d-weight is always zero. 

Theorem 2: The directed d -weight of a coverable 
directed graph G is ± 1 or O. 

Theorem 3: The directed d-weight of a coverable 
directed graph G is zero if and only if G has a circuit. 

A collection C = h / 1 i = 1, ... , k} of (directed) paths in 
a coverable directed graph Guv is said to be independent 
if the matrix M = [m ij 1 has maximal row rank where 
1f/ = I;'j., m /ja j , 1f/ E C, and aj, j = 1, ... ,n is the collec
tion of arcs in Guv' A collection C is said to be 
maximally independent if every path not in C is depen
dent on C. Obviously the number of paths in such a class 
is an invariant of Guv' 

Theorem 4: If G is a coverable graph with no circuit, 
then 

(3.1) 

where t.v is the maximal number of independent paths 
from u to v. 

Remark: The term coverable always refers to cover
ings of G by paths from u to v, the assumed root 
vertices. 

The following lemma enables us to compute Simply 
the directed d-weight. 

Lemma 5: For a coverable graph G, tuv(G) = lEI -I VI 
+2. 
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We note that the combination of these theorems to
gether with the undirected form of (2.16) and (2.17) 
yields a theorem of Greene, 10 

(3(C) = IA.v(c)l· 
Here AuJC) is the set of all directed graphs which may 
be obtained by directing C in such a way that all circuits 
contain the arc a, aa = (u - 1) (arbitrarily chosen), and 
the rooted graph C\a is coverable. 

Proof of Theorem 1: Let f)(C) be the set of orienta
tions of the undirected graph C with roots u and v. We 
note that the result follows easily when C is parallel or 
disconnected. 

Therefore we consider a graph which is not of these 
types. We can choose an edge eo with boundary vertices 
u and w such that w* v. Let f)+(C) be the set of orienta
tions of C such that u is a source. It follows that 

L; duV<R) = 6 duv(R). (3.2) 
H(=DIC) HED+(G) 

The result (2.10) can be applied to the edge eo of every 
sub graph HE f) +( C) to obtain 

(3.3) 

where HO Ef)+(CO) and either HrEf)+(C r) or duJHr) =0. 
Also the set of graphs obtained by deletion and contrac
tion of eo from all elements of f)+(C) includes each ele
ment off)+(C Y ) andf)+(CO) exactly once. 

Therefore, 

6 duv(R) = L d vv(flY) - L duv(Hti) 
HED+(G) HED+(G) HE[F(G) 

" - (r ~ - 6 LJ d"v H) - ~ duv(H). (3.4) 
HrED+ICr) HtiE[)+ICO) 

We now observe that if the theorem were true for C r 

and Co, then by (3.2) and (3.4) it would also be true for 
C. Thus we proceed inductively using the deletion-con
traction rule until we reach graphs which are either 
parallel or disconnected. This must occur'at some stage 
and we have noted the result to be true for such graphs. 

Proof of Theorem 2: We take the root u to be a source 
of the directed graph C, otherwise duv(G) = O. We 
assume C is not a parallel graph as it is easy to com
pute in this case that duJC) = ± 1. We apply the deletion
contraction rule to an arc a attached to u with another 
vertex w, V v). Then 

duuCC) =duv( Cr) -d.v(C
6

). 

The following cases have to be considered at the vertex 
w: 

(I) C\{a} has in-degree zero at w; Cti not coverable 
~ ti - - Y =auv(C ) = 0, hence duJC) =duv(C ). 

(II) C \ {a} has both in- and out-degree nonzero at w 
and Cti)S covera..ble; CY not coverable =duv(CY

) = 0, 
hence duv(C)=-du)C ti ). 

(m) As in II, except that Cti is not coverable, d"v(Gti) 
=0. 

This claSSification gi ves us an algorithm for obtaining 
from the nonparallel graph C either duv(C)~O [(m)] or 
a graph G' [=C r (I) or CO (II)], such that Id (C')I 
= Iduv(C)I. uv 
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In cases (I) and (II) the graph C' may be a parallel 
graph in which case I duv( G) 1 = 1 d uv( C ,) I = + 1, or we can 
apply the above argument for C to C'. 

If the algorithm does not reduce to case (III), then 
after a finite number of reductions the contraction
deletion rule can no longer be applied. This will occur 
if the last contraction-deletion gives rise to parallel 
graph. Therefore, IduJC)I=O or 1. 

Proof of Theorem 3: (~) By the hypotheses u is a 
source and C is not parallel. Applying the contraction
deletion rule to an arc a incident out of u we have the 
cases (I), (II), and (m) as in Theorem 2. 

If we have cases (I) or (n) rather than (III), which 
gives du (C)=O as required, then C' (=C r or CO) is a 
directed graph with a circuit and 1 d.v(C) I = 1 duv(C ') I. 
Now C' satisfies the conditions on C given above and so 
the contraction-deletion rule can be applied again. How
ever, the process will terminate after a finite number 
of steps. This follows because by the rules for (I) and 
(n) an edge adjacent to, and oriented towards, a vertex 
of the circuit is never contracted but always deleted. 
This implies that the graph is noncoverable when the 
last but one of these edges has been deleted and thus we 
have case (III). 

(=;::,) We prove that a coverable directed graph C with 
no circuit implies 1 duv(G) 1 = 1. This is obviously true 
for the special case of C being a parallel graph. Exclud
ing this case we apply the contraction-deletion rule, as 
in Theorem 2, to an appropriate arc a adjacent to u and 
w (* v) and we obtain the following two cases: 

(1) d.v(C) =duv(C Y
) and C' has no circuit, 

(2) duv(G)=-duv(CO) and GO has no circuit. 

It is easy to see that in Case 1 Cr is coverable. It is 
also true that in Case 2 CO is coverable. Let (i) {1T/t, 
(ii) {1T;}~, and (iii) {rrr};, be the set of paths in G such 
that they (a) do not pass through w, (b) are from u to w 
not containing a, (c) are from w to v. The sets (ii) and 
(iii) are nonempty. The fact that CO does not contain a 
circuit implies that each composite path 1T; 0 1T~ is a self 
avoiding path from u to v. 

The collection of paths {rr /K U {1T; 0 1Tn~' t, is a covering 
for Co. 

Thus we obtain a graph G' (= GY or GO) which is 
either parallel in which case the result is proved or we 
can apply the above arguments to G'. Eventually the 
graph C is reduced to a parallel graph which is cover
able. Thus Iduv(G) 1 =1. 

Proof of Theorem 4: The result follows eaSily for 
parallel graphs. Thus as in the proof of Theorem 3 we 
can apply the contraction -deletion rule to an arc a of 
G, with vertices u and w (w* 1), and obtain two cases 

(1) duv(G r) =d.v(G), Cr has no circuit, 

(2) d.v(Gti) = -d.v(G), CO has no circuit. 

We show that the number of independent paths in G and 
CYare equal and differs from the number of independent 
paths in CO by one. Thus we see that the result will be 
true if it is true for the derived graphs. 
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In both cases the graphs are coverable. First of all 
we show that in Case (1) G and G' have the same maxi
mal number of independent paths. Given the natural 
one-one correspondence between paths of G and GY we 
see a maximal independent set C' of directed paths on 
GY gives an independent set C for G. Suppose C is not 
maximal. Then there exists a path 7To such that C U {7To} 

is independent. However, if 7T~ is the corresponding path 
in GY the set C' U {7T6} is not independent. Hence 

" 7T~=?:Cl!;7T;, 7T~E:C, Cl!;",Q. (*) 
1=1 

In the cases 7To 3 a, 7To ;IJ a the coefficients Cl!; at the 
vertex w in (*) sum to 1 and 0 respectively and therefore 

n 

7To=L Cl!; 7T;. 
i=:l 

Thus C U {7To} is not independent. 

In Case (2) we show the maximal number of indepen
dent paths for GO differs by one from that of G. Let Co 
be a maximal independent set of paths for GO. Then if 
7To is any path in G with initial arc a we claim C 
:= Co U {7To} is maximal for G. Independence is obvious. 
For maximality suppose 3 a path 7T in G such that C U {7T} 
is independent. We have 

(i) a <t 7T. 7T is a path in GO and therefore C U {7T} 
=Co U {7To, 7T} is not independent. 

(ii) a E: 7T (* 7To). Let 7Tl be any fixed path from u to w 
in GO and 7T'=7TIGo and 7T~=7ToIGo. By the no-circuit 
property we have directed paths 7T

1
0 7T' and 7TI 0 7T~ from 

11 to 11. Moreover, 

for some Cl!; E Q, and thus C U {7T} is not independent. 

Thus the result can be proved inductively by reducing 
G after a finite number of steps to a parallel graph for 
which the result is trivially true. 

Proof of Lemma 5: Let 7T" ••• , 7Tn be a maximal in
dependent set (MIS) of paths for G. 

Define a sequence of subgraphs Gj=uJ=1 7T j • More
over, define Il(G;)=E;-Vi +2, where Ej(Vj ) are the 
number of edges (vertices) of the graph Gj' We note 
that Il(G) = +1 which trivially equals the number of 
elements in a MIS of paths for G1 • 

We assume the result that Il(G j) equals the number of 
elements in a MIS of paths in Gj and show that it is also 
true for Gj +l • 

The graph Gj + 1 = 7Tj+1 U Gj and therefore Gj+1\G j is a 
union of k distinct chains, each chain connected to two 
distinct vertices of G j' 

The degenerate case of Gj+1=G j (k=O) is trivial be
cause Il(G 1+1) = Il(G j)' If k * 0, then for each of the chains 
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we can find a path from u to v containing that chain with 
all other edges and vertices in Gjo 

Let p{, ... , p~ be the paths so obtained. We claim 
that these paths together with a MIS for G j , say 
{Pl>"" Pu (j J, form a MIS for Gj + l • It is obviOUS that 
the collection is an independent set of paths. To prove 
that the collection is maXimal, let 7T be a path in G j + 1 • 

Then if 7T ~ G j' obviously 7T is not independent of the 
collection. 

If 7T~ G j , then 3 a collection of paths Pj , ••• , Pi such 
that 1 I 

I 

7T - ~ Pi. = a union of paths in G j 
1"'1 J 

aU) 

=L.:Cl!;P; 
i::l 

which implies that 7T is not independent of the set 
{p;, ... ,p;, PJ> ... ,p,,(j}}' 

Also, Il(G j +, ) = Il(G) +k. Therefore Il(G j+1 ) equals the 
number of elements in a MIS for G j +1' 

Thus Il(G) = Il(Gn ) = number of elements in a MIS of 
paths for G. 

If an additional arc a o is attached to G oriented from 
Ii to u the derived graph C is strongly connected and 
from (12), Il(G) = v(C). 

We note that the independent paths {7T" ••• , 7Tn} give 
rise to a set of independent circuits (7T1> ao),"" 
(7T", ao). However, for strongly connected graphs, 
cycles can be generated by circuits and so a maximal 
collection of independent circuits has v(c) elements and 
therefore a maximal set of independent "external" cir
cuits (containing arc a o) must constitute a basis for the 
cycle space on C. 
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A Killing form with nice symmetry and invariance properties is constructed for an arbitrary graded ~ie 
algebra. When this form is nondegenerate. Casimir operators can be constructed. and the graded Lie 
algebra possesses properties analogous to those possessed by semisimple ordinary Lie algebras. 

1. INTRODUCTION 

Recent years have seen the appearance of so-called 
super-symmetry models in particle physics, combining 
bosons and fermions, for which the underlying symmetry 
defines a mathematical structure known as a graded Lie 
algebra (GLA). Crudely speaking, such an algebra pos
sesses a binary operation which is a commutator for 
some pairs of elements but is an anticommutator for 
some other pairs of elements. Details of the applica
tions of GLA to particle physics can be found in the ex
cellent review article of Corwin, Ne'eman, and 
Sternberg. 1 Independently, Allcock2 ,3 has defined struc
tures in a generalized classical mechanics which satisfy 
the axioms for GLA. The mathematics of GLA, which 
were originally defined by Nijenhuis, 4 are briefly dis
cussed in Ref. 1 and further considered in a very re
cent paper of Pais and Rittenberg. 5 The latter propose 
a definition for semisimple GLA and then classify all 
such GLA. It is the purpose of the present paper to de
velop some of the mathematical properties of GLA be
yond those revealed in Refs. 1 and 5. Hopefully we have 
made a start on some sort of structure theory for GLA. 

First we define a GLA (we only consider Zz gradings). 
Let L = Lo ED Lt be a direct sum of real or complex vec
tor spaces Lo (the even space) and Lt (the odd space). 
Define a sign function a on Lo and L j by a (l) = 0, 1, ac
cording as 1 E Lo, Lt, respectively. Then L, together 
with a bilinear product [, ], becomes a GLA provided 

[Lo, Lo]~ Lo, [Lo, LtJ=[Lt, Lo]~ Lt, [Lt, Lt]~ Lo; 

(Al) 

[l, m]=- (_1)<10)<1(m)[m, 1] for alll, m E Lo or Lt; 

(A 2) 

[Z, (m, n]J = [[l, m J, n] + (- 1)<1(1 )<1(m)[m, [l, n]J, (A3) 

for alll, m, n E Lo or Lt. 

The axiom (A2) implies that [, ] is anticommutative 
(like a commutator) on Lo x Lo, Lo x Lt, and Lt x Lo, but 
is commutative (like an anticommutator) on Lt x Lt. The 
axiom (A3), which is the graded Jacobi identity, can be 
rewritten in the more symmetrical form 

(_ l)<1 CI)<1 cm)[(l, m]n] + (- l)<1 cm)<1(n)[[m, n], 1] 

+ (- 1)<1 (n)<1 (/ )[(n, n, m] = 0, for alll, m, n E Lo or Lt. 

It is evident that the even space Lo is an ordinary Lie 
algebra (LA). Although it turns out that GLA possesses 
properties analogous to those for LA, it is the case that 
the structure and properties peculiar to any given GLA 
do not correspond nicely to those of its even space. For 

239 Journal of Mathematical Physics. Vol. 18, No.2. February 1977 

this reason it is often rewarding to deemphasize the 
structure of the even space and to consider the GLA as 
a whole. 

A most important tool in the study of LA is the Killing 
form K. If L denotes an LA and 1 -adZ, IE L, the ad
joint representation defined by (adZ)m = (I, nz], mEL, 
then K: LX L - field of scalars is given by K(Z, m) = Tr 
(ad I adm) for 1, mEL. The importance of K stems from 
its nice symmetry and invariance properties which in 
particular help in the unfolding of the beautiful theory of 
semisimple LA. In this theory the nondegeneracy of K 
prOvides, among other things, an inner product in the 
root space and permits the construction of Casimir 
operators of arbitrary degree. It would be very pleasing 
if an analogous theory could be developed for a certain 
class of GLA. Corwin et all showed by example that it 
is not helpful to define a form for a GLA in precisely the 
same way as done above for LA. They did not, however, 
say that a slight modification yields a bilinear form with 
satisfactory invariance and symmetry properties. It 
is our first job in this paper to establish the existence 
of such a graded Killing form and generalizations to 
higher order. In this we have been guided by the defini
tion of the metric tensor given in Ref. 5. 

When the Killing form of a GLA is nondegenerate we 
can construct Casimir operators in the universal en
veloping algebra, so answering a query of Pais and 
Rittenberg. 5 Under the same hypotheSiS we obtain a 
result which is analogous to the easy part of Cartan's 
criterion for semisimple LA, namely the nonexistence 
of Abelian ideals. Although the converse is not true, 
we are able to mimic for GLA with nondegenerate form 
(called nondegenerate GLA) a number of the classic re
sults from the theory of semisimple LA. 

We have drawn quite freely from the texts on LA and 
in particular from Refs. 6-8. The LA expert will find 
several places where we could have been more economi
cal in our proofs, however, we have aimed at variety 
to show what seems possible within the theory of GLA. 

2. INVARIANT FORMS 

We construct invariant forms for L, a GLA, by means 
of the following device: Let T be any linear transforma
tion of L (as a vector space) into itself, then define a 
new linear transformation T' by setting T'l = Io -11' 
where Tl = 10 + 11 for Zo E Lo, 11 E Lt. We can clearly 
write T'=PoT-PlT where Po, Pi are the orthogonal 
projections onto Lo, Lt, respectively. Let 1 E L, then 
adl, defined by (adl)m = [1, m] is a linear transformation 
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of L into itself. We define the multilinear maps 
Kn: LX LX, .. xL (n factors) - field of scalars by 

Kn(lt> lz, ••. , in) = tr(adl1adlz • .. adln) , (2.1) 

for allt1l 1Z' ••• , in E L. To establish the symmetry of 
Kn we need the following result: 

Lemma 1: (a) If l E L o, then Poadl = PoadlP 0= adlPo, 
and P1adl == P 1adlPl == adlP1; 

(b) If IE Lt, then Poadl = P oadlP l == adlPl and P 1adl 
== P 1adlPo= adlPo' 

Proof: The result is an easy consequence of axiom 
(A1) and the fact that Po, PI annihilates Lt' Lo, 
respectively. 

Now we can state 

Theorem 1: 

Kn(ll, ' 2, 13 • •.. , 'n) == (- 1)0 (!nlKn(lm t1, ••. , [n-l), 

for all 111 lz, •.. , in E Lo or Lt. 

Proof: 

Kn(ll> lz, •.. , In) = Tr(P oadl1 adl2 ••• adln - P 1adl1adlz' •• adZ n) 

= Tr(adl'poadl1 .•• adln_1 

- adl .pl adl1 ... adln_l ), 

using the symmetry of the trace operation. If ZnE La, 
then adZ.Po=Paadln and adl.pl =P1adln, by Lemma l(a). 
If In E Lt, then adl'po==P1adln and adlzP 1 ==Poadl n , by 
Lemma l(b). The conclusion of the theorem follows. 

Corollary: Kn(l1> l2' ... , In) = 0 if the set {il. l2' ..• , In} 
contains an odd number of elements of Lt, where 
II, lz, ... , ln E Lo or Lt. 

Proof: By iterating Theorem 1 we obtain 

Kn(ll, iz, ' .. , in) 

= (_l)[O(l nl+a(ln-l l+"'+O(!l)JKn(lt. 12
, , •• , In), 

from which the result follows-recall that a(Z) = 0,1 
according as l E Lo or Lt. 

Before stating and proving the invariance properties 
of Kn we need the following lemma, 

Lemma 2: 

adlt, m) == adladm _ (_ 1)0(1 lo(mladmad/, 

for aUl, m E Lo or Lt. 

Proof: 

(ad[l, m ])n = [[I, m], nJ= (I, [m, nJ] 

- (_ l)OW1(m l[m, [I, n]) 

by (A3). The conclusion is now immediate. 

This has been leading up to 

Theorem 2: 

Kn(LZ, ttl, 12"", In) +(_l)O(llOCIllKn(ll, [I, ' 2 ), Is, ..• , In) 

+ ... + (_1)0\1 l[aCl l l+OCI Zl+'''+<1 ('n-l l1K
n
(1l> l2' ... , 

xln_1 , [11> In]) = 0 for aU 1, 11 , 12, ••• , 'n E La or Lt· 
Proof: USing Lemma 2 the first term becomes 
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Kn+l (l, ll' 12, ••• , In) - (- 1)0 (l lO Cll l Kn+l (11 , l, lz, ..• , In). 

The second term becomes 

(_1)0(I)OC
l llKn+1Ul' t, 12"", t n) 

- (_1)0(ll[U(ll l+0(12 lJK n+l(/1' lz, " ... , lnL 

The last term becomes 

(_ 1)0 (l l[O (11 l+' "+0 Cln-l llKn+l (11, '
2

, ••• , I, In) 

- (_l)O(l)[O(lll+'''+OClnl)Kn+l(ll, 1
2
"", 'm n. 

On addition of all of these terms we get cancellation, 
leaving 

Kn+1(Z,lb12'" .,In)- (_l)o(lllo(lt l ,,,o (ln l ) 

XKn+1(l1, lz, ..• , 1m I), 

which can be rewritten as 

[1- (_1)0(ll[0(C)+0(11)+'''+o(ln l )Kn+1 (1, 11 , 12"'" In) (2.2) 

by Theorem 1, bearing in mind that a(n = a(t)z. If a(t) 
= 0, (2.2) vanishes. If a(Z) == 1 and a(l) + ... + a(ln) is 
even, (2.2) vanishes. If a(l) = 1 and a(l) + ... + a(ln) is 
odd, K n+1(1,11>'" ,1n) vanishes by the corollary to Theo
rem 1, so again (2.2) vanishes, This concludes the 
proof. 

We have shown that there exist invariant forms of 
arbitrary degree (unless some of them vanish identical
ly) for any GLA. In particular there exists a bilinear 
form Kz from which we obtain the Killing form K de
fined by 

K(l, m) = K2(m, l) = Tr(admadl)' = Tr(adl(adm)'), 

for allt, mEL. We are not being perverse in defining 
K so, but it eases slightly the proof of Theorem 3 on 
Casimir operators. The Killing form K satisfies certain 
symmetry and invariance equations. 

Lemma 3: (a) K(l, m) =K(m, I) for all 1, m E Lo; 

(b) K(l, m) == K(m, l) = 0 for all 1<:=: La, m 'C: Lt; 

(c) K(l, m) == - K(m, l) for alll,m. F Lt; 
(d) K([l, m], n) + (- 1)0 (1)0 (nlK(m, [1, n]) = 0 

for all " 111, n E Lo or Lt. 

Proof: (a)-(d) are easy deductions from Theorems 
1 and 2. 

So any GLA does indeed possess a respectable Killing 
form, which differs from the Killing form for an ordi
nary LA by having more complicated symmetries. 
Whereas the Killing form for an LA is symmetric, for 
a GLA it is the direct sum of a symmetric form on the 
even space and a skew-symmetriC form on the odd 
space. It is as if a GLA combines Riemannian with sym
plectic structure. We must warn, however, that the 
restriction to Lo of the Killing form of L is not the 
Killing form of Lo. It is this which makes it difficult 
correlating properties of Lo with properties of L. 

Invariant forms are of great importance in the theory 
of LA. However, in phYSical applications, their main 
use is in the construction of Casimir operators. Let us 
now assume that the graded Lie algebra L has a non
degenerate Killing form K. We take a basis {loJ, O! 
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= 1,2, .. ,t, for L, where the first s of the la lie in Lo 
and the last t - s lie in 4. Define a dual basis {La}, a 
= 1, 2, ... ,t, by the condition K(lot, La) = 6aa for a, {3 

= 1, 2, ... , t. Note that since K is nondegenerate and 
Lemma 3(b) holds, it is separately nondegenerate on 
La and 4; hence lot E Lo, a= 1, ... , s, and ,ot E 4, 
a= s + 1, ... , t. Then we show presently that 

t 
Cn= .0 Kn(lal' la , . 0 ., la )lanla n-1, ..• , la1 

Q!ltQ!2' ••• 'O!n=1 2 n 

is invariant under L. The first thing to decide is just 
what we mean by invariance under L. Just as for ordi
nary LA, so for La GLA, we can construct a so-called 
universal enveloping algebra U(L), which can be thought 
of as consisting of linear combinations of monomials in 
the elements of L. Ordinary multiplication makes U(L) 
into an associative algebra. Furthermore, we can de
fine a bracket operation on LX U(L) by inductively ex
tending the differentiation property of the adjoint repre
sentation, namely (adl)1nn= [Z, mn]= [l, m]n + (_ 1)0(l)0(m) 

X m[z, n], where l, m E Lo or 4 and n E U(L)o We also 
have the interpretation [Z, m] = lm ± ml, where the plus 
sign occurs if 1, m E 4, the minus sign for l, In E Lo, 
1 E Lo, mE 4, or l E 4, In E Lo. This is useful in re
ducing expressions. We say that U E U(L) is invariant 
under L if (adl)u = ° for all l E L. We remark that Corwin 
et al. 1 have proved a graded version of the Poincare
Birkhoff-Witt theorem which says that a basis for U(L) 
consists of a commutative identity together with mono
mials of the form (l1)i1(l2)i 2 •.. Ut)i t where i1, •.. , is are 
arbitrary integral exponents but is+1' ••• , it can only 
assume the values ° or 1. In this we have l~ = the iden
tity. Before proving Theorem 3 we need: 

Lemma 4: If [l,za]=L:eLaala and [l,la]=L:M",ala, then 
M"a = - (- 1)0(1 )O(la)Lae • 

Proof: Since K(l", Ie) = 6"a, we have M",e = K(l" , [1, Ie]) 
= - (- 1)0(1 )O(/a)K([Z, la], la), by Lemma 3(d). The latter 
is - (_l)0(l)O(la)L"a, as required. 

Now we have: 

Theorem 3: 

t 

Cn = .0 K nU"l' 1" , •• • ,1" )1" nlan-1 •. . 1"1 
al,O!z,.".'O!n=l 2 n 

is invariant under L. 

Proof: Write a(I,,)=a(l")=a(a). Now (adZ)Cm for 
IE Lo or 4, is 

~Kn(l"l' 1"'2"'" l",)[z, l"n ]la n-1 .. ·1a1 

+ BKn(Z"'l' 1"'2' .•• , l"'n)Za n(- 1)0(/)0("'n)[1, l"'n-1) •. ·1"'1 

+Kn(l"" ••• , l"'n)l"nl"'n-1(_1)0(/)[O("'n)+O("'n_1)] 

x [l, l"'n-2] • • 'l"'l + ... 

+ BKn(l"'l' ••• , l"'n)1"nl"n-1 ••• ["'2 

x(_1)0(1)(0<"'n)+ .. ·+0<a2)J[l,I"'1). (2.3) 

Now each [l, l"i) is expanded in the dual basis, the ma
trix elements are taken inside K n(l"l' l" , ••• , l" ) and 
the sum over l"i performed. By Lemm~ 4 this gives us 
terms like - (- 1)0 (1)0 (.I! jlKn (l" 1 ' ["2' •.. , [l, la,], ••• , Zan) 
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with Za i in the (n - i)th place in the monomial. We now 
rename {3i as ai' to give us from (2.3) the expression 

- ~{(- 1)0(1 )O("n)Kn(Z"l' '''2' ... , [I, l"J) 

+( 1)0(/)(0("n)+(an-l)]K (l [l l ]l) 
- " 0!1'···' 'C¥n_l' (l!n 

+ ... +(_1)o(l)(0("'n)+"·+O("1)]K([Zl ]l · .. l )} 
n '<Xl' 0!2 0:71 

Xl"nl"n-1 •. ·l"l. (2.4) 

If we multiply the expression in (2.4) within braces by 
a(l)[ a( a l ) + a( a 2) + ... + a( an)], then because of Theorem 
2 the expression vanishes. So the whole expression (2.4) 
vanishes, which concludes the proof. 

Theorem 3 answers question 3 of Pais and Rittenberg
see Sec. 7 of Ref. 5. Now consider as an example the 
di-spin algebra defined in Ref. 1. Lo has basis e, h,J 
and 4 has basis x, y, where 

[h, e]= 2e, [h, x]=x, [x, x]= e, 

[h,J]=-2f, [h,y]=-y, [y,Y]=-f, 

[e,J]=h, [r,x]=y, [x,y]=-~h, [e,y]=x, 

(2.5) 

and all other brackets are zero. This is essentially the 
algebra denoted GSU(2) in Ref. 5. It is easy to check 
that Kl vanishes identically-a good reason for this will 
be given later-and moreover, that there is no linear 
Casimir invariant (because the di-spin algebra is center
less). The Killing form, in the given basis, has matrix 

(0 ° 3) (0 3\ 
~ ~ ~ E8 _ 30)' 

(2.6) 

The dual basis is Hf, 1h, te, - ty, tx} and hence the sec
ond order Casimir invariant is 

c2=Hfe + ej) +1h2 +t(xy - yx). (2.7) 

This can be written as f(ef+ xy) +1(h2 - h) if we use 
ef-fe=h and xy+yx=-th. It is easy to show that in 
the representation given in Ref. 1, the above Casimir 
invariant assumes the value -!n(n + 1) times the identity 
matrix. This agrees with the corresponding result in 
Ref. 5. Higher order invariant forms are more tedious 
to obtain, but use can be made of Theorem 1 and the 
following lemma. 

Lemma 5: 

[Kn_l ([tt> l2]' la, ••• , In) 

= Kn(Zl, l2' •.• , In) - (- 1)0 (/1 )0 (/ 2) 

XKn(l2, ll' 13, ••• , 1n). 

Proof: This an easy deduction from Lemma 2. 

For the cubic form of the di-spin algebra we find that 
the only nonzero matrix elements are Ka(h, e,j) = 3, 
Ka(f, x, x) = i, K 3(e, y, y) =: - i, K3(h, x, y) = -~, and that 
related through Lemma 5 and Theorem 1. Thus K 3(e, h,j) 
=: - 3, Ka(x,J, x) =: - t, Ka(y, e, y) = t, and Ka(x, h, y) = t. 
When we form the third order Casimir Ca we find that 
it can be reduced to the second order expression tc2 • 

One suspects that C2 is the only independent invariant 
operator. 
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3. NONDEGENERATE GRADED LIE ALGEBRAS 

This section consists of a first listing of properties 
of certain GLA suggested by the classical theory of LA. 
We begin with some definitions. L will always denote 
a GLA LoW 4. 

(1) A linear subset M of L is an ideal if [L, M]:: M. 

(2) An ideal M of L is a graded ideal if wherever 
111 EM is written as 111 = 1170 + m1 , where til 0 E Lo, till 

E: 4, we have also 1110, 1111 E: M. Equivalently M= (M 
n La) EB (M n L1 ). 

(3) An ideal M is Abelian if [M, MJ = o. 

The notion of a graded ideal, as given in Ref. 1, would 
seem to be the significant one for GLA. In particular 
we note without proof that the set of graded ideals of a 
GLA is closed under addition, intersection, and the 
bracket operation (by the graded Jacobi identity). Graded 
ideals occur naturally as the kernels of structure pre
serving transformations between G LA. 

It is tempting to say that a GLA is semisimple if it 
contains no nontrivial graded Abelian ideals. However, 
at this early stage in the game, and especially, as we 
show later, such GLA do not correspond nicely with the 
semisimple GLA already defined by Pais and Rittenberg5

; 

we refrain from making such a definition and so causing 
terminological confusion. It turns out, however, that 
some rather nice properties do hold for GLA whose 
Killing form is nondegenerate-for these we offer the 
name nondegenerate GLA. 

lf the Killing form K is degenerate it possesses a 
nonzero kernel M={l E: L: K(l, 111) = 0 for all mE: L}. 
More generally, if N is a subset of L, its left orthogonal 
complement N~ can be defined as {I E L: K(l, n) = 0 for 
all Jl (= N}. Evidently r( is a linear subset of L even if 
N is not. The right orthogonal complement ~={l 
E: L: K(n, n = 0 for alln eN}, In general there is no 
reason to suppose N~= N~. However, given a subset N, 
define N' = {no - III : for all no + 171 EO N, where no E Lo, 
111 C 4t. Then 

Lem ma 6: (N')~ = N~o 

Proof: Suppose I E (N')~ and 1= 10 + [1 where 10 E Lo, 
II E: 4. Then K(Ho - n1, 10 + 11) = 0 for all no - n1 E N' with 
no EO Lo, III E 4 and 110 + HI EN. By Lemma 3 we deduce 
K(Zo + 11, 110 + nl) = 0, for all no + nl E N. It follows that 
I E~; hence (N')~'=~. The reverse inclusion also holds, 
hence the result. 

We say that a subset N is graded if N' = N. Evidently 
graded ideals are graded, but in general an ideal is not 
graded. For a graded subset Lemma 6 tells us that we 
can define a unique orthogonal complement ~ which is 
equal to both the left and right orthogonal complements. 
In particular there was no need to define a left and right 
kernel of the Killing form. We now have: 

Lemma 7: The orthogonal complement of a graded 
ideal is a graded ideal. 

Proof: Let N be a graded ideal of L. By Lemma 3(d) 
we can write K([l, n"], n) - K(n", [n, t) = 0 for all n EN, 
n" EN", I (=: L. The second term vanishes because [n, Z] 
EN which is orthogonal to n". Therefore [I, n-'] is ortho-
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gonal to n for all n EN, hence [I, n"] EO N" for all IE L, 
n" EN". This ensures that N" is an ideal. 

Now let n-' EN" be decomposed as n~ = n~ + nt, where 
"l (" -' ) no E Lo and nl E 4. We have that K no +n1, n = 0 for all 

n EN. In particular, since N is graded, K(n~ + nt, no) 
= 0 for all no EO Nn Lo. By Lemma 3(b), K(nt, no) = 0, so 
K(n~, no) = 0 for all no EN n Lo. Also by Lemma 3(b), 
K(n~, nl) = 0 for all nl E Nn Lo. Since N= (Nn Lv) 
07 (N n L), we deduce that K(n~, n) = 0 for all n EN. It 
follows that n~ E N-'. Similarly nt EO N". Hence N" is 
graded. 

Lemma 8: The kernel of the Killing form is a graded 
ideal. 

Proof: This follows from Lemma 7 since the kernel 
of the Killing form is the orthogonal complement of the 
graded ideal L. 

If K is nondegenerate, its kernel is trivial. However, 
we can deduce a much stronger statement: 

Theorem 4: A nondegenerate GLA has no nontrivial 
Abelian graded ideals. 

Proof: Let A be an Abelian graded ideal of L, and B 
a comple mentary vector subspace. Thus L = A dJ Band 
An B={O}. lf aEOA, then ada is the zero transformation 
on A, since A is Abelian, and maps B into A, since A 
is an ideal. Since A is graded, (adlada) ' is the zero 
transformation on A and maps B into A. It follows that 
K(l, a) = 0 for all IE L. Hence a belongs to the kernel of 
K, which we know to be trivial. Therefore A ={O}. This 
concludes the proof. 

The converse to Theorem 4 is not true. For example, 
it is easy to check that the if, d) algebra described in 
Sec. n(D) of Ref. 1 has degenerate Killing form yet has 
no nontrivial ideals. We must not, however, be per
turbed by this, for as we shall see, Theorem 4 alone 
implies some quite strong results. We need another 
technical result. 

Lemma 9: Let M be a graded ideal of L. Then the 
restriction to M of the Killing form of L coincides with 
the Killing form of M. 

Proof: The argument is similar to that involved in 
Theorem 4. We can now prove: 

Theorem 5: Let L be a nondegenerate GLA. Then L 
can be written as a direct sum of graded ideals EB"M,., 
where each M,. is nondegenerate and has no nontrivial 
graded ideals. 

Proof: Suppose N is a proper graded ideal of L of 
greatest dimension, then N" is a graded ideal by Lemma 
7. From Lemma 3(d) we can write K([n, n"1, l) 
-K(n-' [I nJ)=OforallIEL, nEN, n-'EN-'. ButNis , , -' 
an ideal so [I, n] EN which is orthogonal to n . Hence 
K([n, n~], Z) = 0 for all I E L, which, by nondegeneracy, 
implies [n, nl]= O. So N commutes with N". 

Now Nn ~ is a graded ideal of L and also a subspace 
of N. lf Nn N"*{O} then the center Z(N) of N is non
trivial. It is not hard to check that Z(N) is a graded 
ideal of N. But the amusing thing is that Z(N) is also 
a graded ideal of L. This follows by applying the graded 
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Jacobi identity. This makes Z(N) a nontrivial Abelian 
graded ideal of the nondegenerate algebra L. The con
tradiction with Theorem 4 shows that Nn 1t={0}. 

N + N" is a graded ideal of L which must coincide with 
Nor L by maximality. Since Nn 1t={0}, we deduce that 
1t={0} or L=NEB1t. We now show that 1t={0} is im
possible. The Killing form of L restricted to N is non
degenerate since its kernel is Nn 1t={0}. The Killing 
form of L restricted to Lo is symmetric and nondegen
erate; since N is graded the same is true of Nn La. The 
Killing form of L restricted to 4 is skew symmetric 
and nondegenerate; since N is graded the same is true 
of Nn 4. We can find a basis for Nn Lo, {n..}, 
a=l, ... ,p say, for which K(n""nB)=K(nB,n",) = A",O"B' 

where A" #0 O. Let Z E Lo, then consider Z' = Z - L: Ll 
x [K(Z, n")n,, ]/A". Evidently K(Z', nB) = O. Also Z' is or
thogonal to all of Nn Lt, so Z' E 1t and hence Z' = O. We 
can also find a basis for N n 4, {m~}, a= 1,2, .0', q, 
say, for which K(m~, ma) =K(m~, m;) = a for all a, (3 and 
K(rn~, mp) = - K(m-;', m~) = /llJAJtB (this follows from the 
canonical form for a real skew-symmetric nondegen
erate bilinear form). Let Z E 4; then consider 

Z' = Z- t 2 (K(l, m~)m~ - K(Z, m~)m~). 
'" =1 /J.", 

Evidently K(Z', m~) = a for all {3. Also Z' is orthogonal to 
all of Nn Lo, so Z' E N" and Z' = O. It follows that all 
elements of LoEB 4 can be expressed as linear combi
nations of basis elements of N, hence N= LoEB 4, con
trary to the proper maximality of N. We are left with 
L=NEB1t. 

We have already observed that the Killing form of 
L restricted to N is nondegenerate. If the Killing form 
of L restricted to 1t were degenerate, then, since N 
is orthogonal to ~ and we have L = NEB ~, we would 
have that K itself is degenerate. Finally, by Lemma 9, 
we have that N, ~ have nondegenerate Killing forms. 
Induction completes the proof. 

Corollary: If L is a nondegenerate GLA then [L, L] 
=L. 

Proof: In the above theorem the ideals M", Me com
mute if a#of3. It follows that [L, L]=EB",[M", M,.]. Now 
[M",M,,] is an ideal of M", so we either have [M", M,,] 
={ a} or M". The former case would imply that M,. is 
an Abelian graded ideal of L, contrary to Theorem 4. 
It follows that [L, L]=EB",M" = L. 

Using an obvious definition of solvability of GLA the 
above corollary implies that a nondegenerate GLA is not 
solvable. Conversely a solvable GLA must have a de
generate Killing form. On the other hand a GLA with 
degenerate Killing form [e. g., the if, d) algebra of Ref. 
1] does not necessarily possess ideals, so in particular 
is not necessarily solvable. 

The above corollary also implies that the first in
variant form of a nondegenerate GLA vanishes identical
ly-Theorem 2 gives K1 ([1, m]) = O. Furthermore, there 
is no way of constructing a linear Casimir invariant, 
for such an element would lie in the (trivial) center of 
L. This explains why the di-spin algebra has no linear 
invariants. 
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The above results encourage one to check through 
some of the other theorems about semisimple LA to see 
if they work for nondegenerate GLA. We now turn our 
attention to a study of graded derivations with the aim 
of showing that all graded derivations of a nondegenerate 
GLA are inner derivations. We say that a linear trans
formation of L to itself is an even derivation if it pre
serves Lo and 4 and if d([Z, m]) = [dZ, m] + [z, dm] for all 
l, mEL. d is an odd derivation if it interchanges Lo and 
4 and if d[Z, m] = [dZ, m] + (- l)a(l )[Z, dm] for all mEL, 
Z E Lo, or 40 If Do, Dl are the spaces of even and odd 
derivations of L, respectively, then D==DoEBD1 can be 
given the structure of a GLA. All we have to do is to 
insist that Cd, d'] == dd' - (- l)a(d )aW) d'd for all d, d' E Do 
or D1 • 

If Z E Lo, then adZ E Do and if 1 E Lt, adZ E D1 • These 
follow from the graded Jacobi identity. It follows that 
adL={adl : Z E L} is a graded subspace of D. Further
more, we have: 

Lemma 10: adL is a graded ideal of D. 

Proof: We write (adL)o={adZ: I E Lo} and (adL)l 
={adZ : I E Lt}. Then adL = (adL)o ffi (adL)l' To prove the 
result, it suffices to show that [Do,(adL)o]<: (adL)o, 
[Do, (adLh]C;;; (adL)b [Db (adL)o]:: (adLh, [D1, (adL)l] 
C;;; (adL)o. 

Suppose dE Do, and adZ E (adL)o or (adL)b then 

[d, adZ](m) == dadZ(111) - adldm 

= del, m]- [I, dill J 

= [dZ, m] 

= (add Z){nzL 

It follows that Cd, adZ] E (adL)o or (adLh according as 
Z E Lo or 4. 

Suppose dE D1 and adZ E (adL)o or (adL)l, then 

[d, adZ](m) = dadZ(nz) - (_l)a(l)adZ dm 

=d[Z, m]- (_l)a(l)[I, dm] 

= [dZ, m] + (- 1)a(l )[z, dm]- (- l)a(1 )[z, dm] 

= (add Z)(m). 

It follows that Cd, adl] E (adL)l or (adL)o according to 
Z E Lo or 4. This concludes the proof. 

Theorem 6: A nondegenerate GLA has no outer 
derivations. 

Proof: We are asked to prove adL=D. 

Now Z - adZ is a graded homomorphism of L into D 
with kernel the center of L. But L is nondegenerate so 
its kernel is trivial. It follows that L is embedded as 
adL in D, so that adL has nondegenerate Killing form 
K. Furthermore, since adL is a graded ideal of D, we 
know that K is the restriction to adL of the Killing form 
K' of D. If (adL).l is the orthogonal complement of adL 
with respect to K', then the nondegeneracy of K ensures 
that (adL) n (adL)" is zero. This further means that N 
= [adL, (adL)"] is zero, for, since both adL and (adL)" 
are graded ideals, N is contained in both adL and (adL)". 
If now dE (adL)\ then 0 = [d, adZ] = add I for alll E L, 
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from which dl"" 0 for all l E L, from which d"" O. Thus 
(adL)~={O}. To complete the proof, we take dED and 
note that l - K' (adl, d) is a linear functional on L. Since 
K is nondegenerate there exists mEL such that K(l, m) 
=K'(adl, d) for alll E L. Write d= d - adm, then K(adl, d) 
=K'(adl, d) -K'(adl, adm) =K(l, m) -K(l, m) =0 for all 
I E L. It follows that d E (adL)~ ={ O}. Hence d = adm, an 
inner derivation. 

Again we have a result which works for nondegenerate 
GLA but does not work for all GLA with no nontrivial 
Abelian ideals (as pointed out in Ref. 1). Further prob
lems which suggest themselves are (a) representation 
theory with a view to proving Schur's Lemma and com
plete reducibility for nondegenerate GLA; (b) root space 
analysis for nondegenerate GLA-perhaps this is too 
much to expect; and (c) classificatioJ1 of low dimensional 
GLA. There are many other obvious problems. 

Note added in proof: After the author had submitted 
this paper he was alerted (Ref. 9) to the existence of 
some other preprints which mention and use the Killing 
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form for GLA's as defined above. The major effort in 
these works has been to classify all simple GLA's 
(Refs. 10,11). 

The author is now preparing a paper on the classifi
cation of GLA's of small dimension. 
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Plane wave solutions in scalar tensor theories and solutions 
of source-free Einstein-Maxwell theory 

Dipankar Ray 

Department of Physics, New York University, New York. New York ]0003 
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Vacuum solutions of the field equations that satisfy the original notion of the plane wave, namely 
g_v = g_v(Z), Z = I_afLx -, a/s being constants and g _vZ,_Z,v = 0, are sought for both Brans-Dicke scalar-tensor 
theory and the more recent scalar-tensor theory due to Sen and Dunn. (Here Greek letters range from 1 
to 4 and Latin letters from 1 to 3.) A complete set of solutions are obtained for both cases. Although not 
required at the outset, it turns out that, in both cases, the scalar field is also function of Z alone. As a by
product, one gets the complete set of solutions of the Einstein-Maxwell equations for the null 
electromagnetic field for the cases when g_v satisfies the above-mentioned requirement. 

1. INTRODUCTION Thus to have det I g "V I < 0, we must have 

gl~22 - gi2 > 0, 

Therefore, let 

(gl~22 - gl22)l/2 = Cl!, 

(I) 

(2.3) 

Bondi, Pirani, and Robinson l have defined a plane 
gravitational wave as nonflat solution of the vacuum 
Einstein equation that admits a five-parameter group of 
motion. A question has been raisedl

-
3 as to whether a 

plane gravitational wave as defined above is really as 
"plane" as a plane electromagnetic wave in Maxwell's 
theory, i. e. , for the plane gravitational wave as defined 
above, can g "V be expressed as follows: 

where Cl! is some real positive function of X4. From 
(2. 1) one gets after a little calculation 

g"v=g"v(Z), 

(1. 1) 

g"VZ Z =0. 
I j.1, ,v 

According to Ebner, 2 there exists a subclass of plane 
gravitational waves as defined by Bondi, Pirani, and 
Robinson, namely "homogeneous plane gravitational 
waves" for which g "V can be put in the form (1. 1)0 Also, 
Takeno3 has suggested that instead of the more familiar 
definition due to Bondi, Pirani, and Robinson, Eqs. 
(1.1) should be used for defining a plane gravitational 
wave. 

Under these circumstances, it seems worthwhile to 
look into other theories of graVitation, scalar tensor 
theories for instance, for the solution of the vacuum 
field equations that can be put in the form (1. 1). 

In this paper, we look into vacuum solutions of the 
field equations with g "V of the form (1. 1) in Brans
Dicke4 theory and also in a more recent scalar tensor 
theory by Sen and Dunn. 5 

2. OBSERVATIONS ON gil v AND Rllv 

Obviously (1. 1) can be rewritten as 

g"v =g "v(x4
)," g44 = O. 

From (2.1), 

gp = Agp + J-Lgi2, 

A, J-L being some functions of X4. 

Also from (2.2), 

det Ig"v I = - (g34 - Ag14 - J-Lg24 )2(gUg22 - gi2)' 

(2.1) 

(2.2) 
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R =.!.(g4k Ogu) (g41~) 7 
iJ 2 ~ ox4

' 

R _.!. ( 4k~) ( 41~ _ 0 lOgvCg ) 
4i - 2 g OX4 g OX4 (lx4 

From (2.4), 

Ri=O, 
_ 1. ~og4j 

R- - 2t{ij OX4 Ox4' 

-4 1 og4i og4j 
R4 = - zgij OX4 axr' 

(2.4) 

(2.5a) 

(2.5b) 

(2.5c) 

With these purely mathematical observations, we 
proceed to study two scalar tensor theories one by one. 

3. SEN-DUNN THEORY 

Here the vacuum field equations are 
, 

R"v - tg"vR = a,ILa,V - tgILva,,,,a,a (3.1) 

where eO~ is the scalar field in Sen-Dunn theoryo 

Equation (3.1) can be rewritten as 

(3.2) 

Considering (3.2) for J-L=i, v=j, and using (2.4), 
3 

a= t .6 g4k o~gjf Xi + some function of X4. (3.3) 
i=1 uX 

However, since R44 is a function of X4 alone, we get 
from (3.2) that a 4 is a function of X4 alone. But in view 
of (3. 3), a,4 can be a function of X4 alone if and only if 

4k ogu . 1 2 3 g axr=cj , t= , , , (3.4) 
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where C 1 ,C2 ,C3 are constants. From (3.4) and (2.1) 

og41 ag4J 
g Ij --;--:r- --;--:r = O. 

aX vX 
(3.5) 

Equations (2. 1), (2. 2), and (3. 5), together with inequa
lity (I), give 

i. e., 1e,11 are constants. 

From (2.1), (2.2), and (3.6), 

4k ilgjk 0 . 
g --axr= , l.e., 

From (3.3) and (3.7), 

a= a(x4). 

Also from (2.4) and (3.8), 

Rjj=O, R4j =0. 

(3.6) 

(3.7) 

(3.8) 

Thus (2.1), (2.2), (3.6), and (3.8) together, satisfy 
(3.2) except for l1=v=4. Therefore (3.2) for all Jl and 
v are satisfied if along with (2.1), (2.2), (3.6), and 
inequality (I) we have 

a=J~dx4, 

provided R44 > O. 

This provides the complete set of solutions of the 
vacuum field equations of Sen-Dunn theory, with a 
metric of the form (1. 1). 

4. NULL ELECTROMAGNETIC FIELD IN 
EINSTEIN THEORY 

(3.9) 

It is of some interest to note that if on the other hand 
we have R44 < 0, then (2.1), (2.2), and (3.6), together 
with inequality (I) provide the complete set of solutions 
of the Einstein-Maxwell equations for null electro
magnetic fields for g "V of the form (1. 1); in other 
words, given (2.1), (2.2), and (I) (which are the corol
lary of (1.1) and detlg"vl < 0), the necessary and suf
ficient condition that g"v provide a solution for the 
coupled Einstein Maxwell equation for the null electro
magnetic field is (3.6). 

Proof: (3.6) is necessary: For null electromagnetic 
fields, the Einstein equations ares 

(4.1a) 

(4.1b) 

Considering (4.1a) for l1=v=i and using (2.4) [note 
that (2.4) follows from (2.1)], 

~ (g4k a;;: ) 2 +k~=O. 

Thus 

kj=O 

and 

g4k agjk - 0 
~- . 

which along with (2.1), (2.2), and (I) leads to (3.6). 
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(3.6) is sufficient: As before, (2.1), (2.2), (3.6), 
and (I) lead to 

RlJ=O, R41 =0. 

Thus (4.1a) is satisfied if along with (2.1), (2.2), 
(3.6), (I), and R44 < 0 we have 

(4.2a) 

and 

(4.2b) 

Also since a depends only on x\ k" has only one 
nonvanishing component, namely k4• Thus, since g44 

=0. (4.1b) is also satisfied. 

Now, Maxwell's equations are 

F"v. =0 *F"v. =0 ,v, ,....' 

where 

F"v = k"pv _ kVP", * F"v = ~r=g[JlVO!i3]F'6, 

[JlvO!i3] = 0 when (Jl, v, o!, i3l are not all different, 

= 1 when (11, v, O!, m are all different and 

form an even permutation of (1,2,3,4), 

= - 1 when (jJ., v, O!, m are all different and 

form an odd permutation of (1,2,3,4), 

and P" is a vector satisfying 

(4.3) 

p"p"=_1,9 P"k"=O. (4.4) 

A little calculation shows that given (2. 1), (2. 2), 
(3.6), and (I), and k" being defined by (4.2), if P" is 
chosen consistent with (4.4) and if P" is a function of 
X4 alone, then (4.3) are satisfied. Thus (3.6) provides 
the sufficient condition on g "vas well. 

5. BRANS-DICKE THEORY 

If ¢ is the scalar field in Brans-Dicke theory, w the 
Brans-Dicke constant, D¢"'¢,,;", then vacuum field 
equations in the Brans-Dicke theory are given by 

R"v - k,,~ = - (w/ ¢2)(¢ ,Ii ¢ ,v - tg "v¢ ,,,,¢'''') 

- (1/ ¢)(¢,,,;v - g"v D¢), 

which can be rewritten as 

R"v = - (w/ ¢2)¢ ,Ii ¢ ,v - (1/ ¢)(¢ ,Il;V + ~g"vD¢). (5.1) 

Setting 

gliv'" ¢g"v' (5.2a) 

fi"v"" Ricci tensor formed out of g"v, (5.2b) 

and 

4> = log¢, (5.2c) 

Eq. (5.1) reduces to 

R"v=-(w+i)4>,,,4>,v' (5.2d) 

We note that (5.2) is quite similar to the Sen-Dunn 
field equation (3.2). We shall use this similarity later. 
Before that we prove that the scalar field ¢ (and hence 
4» is a function of X4 alone. [For w'* - i, application of 
the Bianchi identities on (5.1) directly gives D¢ = O. 
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This considerably simplifies the proof of ¢ being a 
function of X4 alone. However, the proof given here 
applies to both w"* - % as well as to w = - %. ] 

From (2.1), (2.5a), and (5.1), 

a¢!4 + ¢'4(~ ¢ +!P..g41~) =0. 
ax' ¢.J 2 ax4 

Therefore, either 

¢,4= 0 (5.3a) 

or 

(log¢,4 + w log¢),i = (¢/2)x", 

where 

(5.3b) 

x= _ [(g41 a:;~ ) Xl + (g41 ~~42) x2 

+ (g41 aa~i) x 3 J. (5.3c) 

However, we shall just now see that (5. 3b) also leads 
to (5. 3a). 

From (5. 3b) we see that, treating X4 as a constant, 
the derivatives of log¢·4 + w log¢ with respect to Xl, x2, 
and r, are proportional to the derivatives of x with re
spect to xt, X2, and x 3 • For physical functions, this 
means that log¢,4 + w log¢ and X are functionally depen
dent when X4 is treated as a constant, i. e. , 

log¢,4 - w log¢ = </J(X, X4), 

where </J is some function; then from (5. 3b), 

!P.. _ (1)!(X,x4
) 

2 - aX 

Therefore, ¢ is also a function of X and X4, which owing 
to (2.1), (5. 3c) leads to 

¢,4=0. 

Thus (5.4) is true either way. 

From (2.1), (2.2), and (5.4), 

¢ = ¢(xl + i\x3 ,x2 + J-iX3,X4). 

From (5.5), ¢,1's are also functions of Xl+ AX3
, x2 

+ J-ix3
, and X4 only and ¢.4 is given by 

(5.4) 

(5.5) 

¢.4=~X3+1), (5.6) 

where ~ and 1) are functions of Xl + ,\x3, x 2 + J-ix3, and X4, 

~ being given by 

dA 
A'=-- dx4 , 

dJ-i 
J-i'=- dx4 , 

(5.7) 

and 1) is the derivative of ¢ with respect to X4, treating 
Xl + i\x3, x 2 + fJ. X3 as constants. (¢.4 denotes the deriva
tive of ¢, with respect to X4, treating Xl, x2

, and x3 as 
constants. ) 

Using (2.1), (2.2), and (5.5), a little calculation 
shows that O¢ depends only on g.,.v and ¢.I but not on 
¢ 4' Thus O¢ also depends only on Xl + i\x3, x 2 + fJ.x3

, 

a~d X4. 

By using (2.1), (2.2), and (5.5), Eqs. (5.1) for J-i 
=4, v=i reduce to 
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(5.8) 

where 

8=log¢+ h, (5.9) 

X is given by (5.3c). 

Since ¢ ¢ k' and O¢ are functions of Xl + i\x3, x 2 
, • 4 

+ J-i~, and X4 only, and g41 and R41 are functions of x 
only, it follows that U is a function of X4 only. Also 
from (2.1), (2.2), and (5.3c), a little calculation shows 
that X is also a function of Xl + i\x3, x 2 + fJ.x3 , and X4 

only and therefore, from (5.9), 8 is also a function of 
Xl + i\x3, x2 + J-ix3

, and X4 only. 

Putting (5.6) into (5.8) for i=1,2, 

x3 Qlp + f3p = 0, p = 1,2, 

where 

(5.10) 

a~ 
Qlp=axP +~8.p, (5.11a) 

(1) 
f3 =-. +1)8.-U. 

I> ox¥ .¥ 
(5.11b) 

Since ~ and 8 are functions of Xl + ,\x3, x 2 + J-ix3, and 
X4 only, it follows from (5.11) that Qlp, f3p (p=1,2) are 
also functions of Xl + i\x3, x 2 + fJ.x3 , and X4 only. Since 
r obviously cannot be expressed as a function of Xl 
+ i\x3, x2 + fJ.x3 , and X4, we get from (5.10) 

QI,,=O, f3,,=0, p=1,2. (5.12) 

From (5.12), 

o(~e8) = 0 1 axp , p= ,2. 

However, since ~e8 depends on x 3 only through Xl 

+ i\x3 and x2 + fJ.x3 , we must have 

a(~e8) -0 1 2 3 axl - , i= , , 
or 

~ = t(x4 )e-B, where t is some function. (5.13) 

Considering (5.1) for fJ.= v=4, using (2.2), (5.5), 
(5.6), and (5.13) and proceeding as before, we have 

2 
Ax3 + Bx3 + C = 0, 

where A, B, and C are functions of Xl + i\x3, x 2 + J-ix3, 

and X4; specifically 

A= - (wi ¢)~2 - (~.IAl + ~.2J-i1). 

Again for similar reasons 

A=O, 
i. e. , 

(5.14) 

Putting (5.13) into (5.14) and using (5.7), (5.9), and 
(5.13) either 

(5.15a) 

(5.15b) 
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However, we shall now see that either of (5.15) es
sentially leads to A' = 0, !J.' = O. 

Case (0: (5. 15a) is true: Using (2.1), (2.2), (5.4), 
(5.5), (5.15a), and (5. 3c), 

q;4;4= 0, 

X,iq;l =0, 

gllq;,i ;/X.,! = o. 
From (5.1), (5.4), and (A), 

4 Oq; 
ii4 = -2f' 

(A) 

(B) 

(C) 

(D) 

ConsideringgiJX,IRjk' using (2.4), (5.1), (5.3c), (B), 
and (C), 

gIiX.;X,j = - Oq;/4q;. 

Using (2. 5c), (5.3c), (D), and (E), 

og4i og4j 

g -- ---0 
iJ ox4 ox4 - • 

Using (2.1), (2.2), (F), and inequality (1), 

A'=O, !J.'=O. 

(E) 

(F) 

(G) 

Case (II): (5.15b) is true: (5. 15b) together with (5. 3c), 
(2.1), and (2.2) lead to (F) and as before, (2.1), (2.2), 
and (F) together with inequality (1) lead to (G). Thus in 
any case we have 

A' = 0, !J.' = 0, (5.16) 

i. e., ,\ and !J. are constants. 

From (2.1), (2.2), (2.4), (5.3c), and (5.16), 

(5.17a) 

(5. 17b) 

q;\4 = O. (5.17c) 

Considering R: with the help of (2.1), (2.2), (5.4), 
(5.16), and (5.17), 

Lq;=O. (5.18) 

Considering glLVR lLv from (3.2) and using (2.1), (3.4), 
(3.17), and (3.18) 

(5.19) 

Equations (2.1), (2.2), (5.19), and inequality (I) lead 
to 

(5.20) 

From (5. 2a) and (5.20), we note that if glLv satisfies 
(2.1), (2.2), (3.6), and (I), so does glLv, i. e. , 

gILV=g/LV (x4), g44= 0, gj3= Agu + Ilg12 , 

where 

dA dll 
dx4= 0, dx4 = O. 

(5.21) 

As before, (5.22) satisfies (5.2d) except for !J.=v=4. 
Thus following Sec. 3, the complete set of solutions of 
(5.2d) and hence of (5.1) are given by glLv that satisfy 
(5.21) if for w*-i, 

248 

~<O 
w+~ . 
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and 

[f (~) 1/2 dx4]. 
q;=exp w + ~ 

for w= -~m, 

R44 =0 

and q; is an arbirary function of X4. 

Then glLv can be determined from i;.v and q;. 

6. CONCLUSION 
A. Solutions 

Thus (2.1), (2.2), (3.6), and (I) together provide the 
complete set of solutions for gli.v of the form (1. 1) for: 

(a) vacuum field equations for the Sen-Dunn theory 
if 

ii44 > 0 

and scalar field a is given by 

a= I fR;.dx 4
; 

(b) the null electromagnetic field in the Einstein 
theory if 

ii44 < 0 

and the propagation vector k Ii. [defined in (4. 1) 1 is given 
by 

J' r--- 4 
klJ.=CI!.IJ.' CI!= v-R44dx; 

(c) the vacuum field equations in Brans-Dicke theory 
for w* - ~ if 

~ < 0 [RlJ.v being defined in (5.2)] w+ 2 

and q; the scalar field is given by 

q;=exp[! (:~%) 1/2 dxJ 

(d) the vacuum field equations in the Brans-Dicke 
theory for w = - ~ if 

-
R44 = O. 

From the above it is obvious that a simple procedure 
for making R44 positive, zero, or negative as desired 
is needed for the present situation. This is given as 
follows. 

From (2.1), (2.2), (3.6), and (I) it is obvious that 
by a suitable choice of coordinates, one can set ,\ = 0, 
11 = 0, without any loss of generality and without any 
violation of the previous equations. gli.v thus takes the 
form 

gu g12 0 g14 

g12 g22 0 g24 
(6.1) 

where as before, g IJ.V are functions of X4 alone. Then, 
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R _ a2 log _ 3 lO!Q&4 3 loga _!.. (3g11 31[11 
44 - iJx42 3x4 ox4 4 3x4 V 

a~2 ag alf2 a ) 
+2 ax4~+V~ , (6.2) 

where a is given by (2. 3l. 

From (6.1) and (2.3) we see that Ill, 112, tf2, and a 
are completely specified by gll' g12' and g22' Thus from 
(6.2) we note that, for preassigned gu, g12' g22' one 
can easily make R44 as positive definite, zero, or nega
tive definite as desired only by suitably assigning gw 

Also from (6.2) we see that instead of solving the 
scalar field (or the propagation vector in the case of 
the null electromagnetic field) in terms of g". as has 
been done previously, the field equations can be solved 
for a preassigned (but dependent on X4 only) scalar field 
or propagation vector by suitably choosing g34' 

B. Covariant reformulation of results 

The original intuitive notion of plane wave, as stated 
in Sec. 1 is based on a special choice of coordinates. 
Thus, the solutions obtained in this paper have been 
specified only in a special system of coordinates. How
ever, it is interesting to note that the notion of plane 
wave as given in Sec. 1, as well as the solutions ob
tained, can be restated in a coordinate independent 
manner by using the language of group theory as can be 
seen through the two following statements. 

Statement 1: A necessary and sufficient condition that 
g "V can be put in the form (1. 1) is that space defined 
by g"v admits a three-parameter Abelian group of mo
tion with isotropic hyper surface of transitivity. (By 
isotropic hypersurface, we mean a hyper surface a 
=const, such that a,,,a'''=O.) 

Necessary condition: (1. 1) can be transformed into 
(2.1), and (2.1) admits a three-parameter Abelian 
group G3 with generators, a/ax!, %x2 , 3/ox\ and X4 

= const as an isotropic hypersurface of transitivity. 

SUfficient condition: If a space admits a three-param
eter Abelian group, then by proper choice of coor
dinates, its generators can be expressed aslD 

a a 3 
3Xl' ox2 , 3x3 ' 
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Obviously X4 = const gives a hyper surface of transi
tivity, which if isotropic, leads to g44 = O. 

Statement 2: A space that admits a three-parameter 
Abelian group Gs with isotropic hyper surface of transi
tivity will satisfy R"v = ± a,,, a,v with appropriate choice 
of a, if and only if the three Killing vectors ~", 11", '" 
corresponding to Gs are such that 

/;,3"=0, 11,,'''=0, ',,/;"=0 
and for any direction element dx" 

(6.3) 

R".dx"dx·>O (for R".=a,,,a,), 

R"vdx"dxv<O (forR"v=-a,,,a,v)' 

Proof: With the special choice of coordinates used in 
(2.1), ~", 11", '" are 61",62",63 " respectively. Thus 
(6.3) is equivalent to 

gSl =0=gS2=g33' 

The metric thus takes the form of (6.1) and hence 
the result follows. 

lt may however be noted that although only a three
parameter Abelian group was postulated at the outset, 
the metric (6.1) actually admits a five-parameter in
transitive group with an isotropic hyper surface of 
transitivity. 
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The closure result of Friedmann cosmology is briefly reviewed. A new closure result is presented for 
nonrotating. dust filled. but otherwise anisotropic. inhomogeneous cosmological models. The isotropy 
assumptions are replaced by much milder physical assumptions while the crucial Friedmann condition. 
871'KP - 3 h 2> O. is replaced by the only slightly stronger 471'KP - 3 h 2 > O. 

I. INTRODUCTION 

One of the many intriguing features of Friedmann 
cosmology is the prediction, under certain conditions, 
of the closure (finiteness) of the universe. The 
Friedmann models we have in mind are dust filled, with 
space-time topology M =lRx V3 in which the spatial 
sections V~: t = const (t representing proper time) are 
othogonal to the fluid flow (and hence the fluid is non
rotating). The Friedmann models are characterized by 
stringent symmetry conditions; all local observations 
made by an observer co moving with the cosmic fluid are 
isotropic. As a consequence, the spatial sections V~ 
(corresponding to our spatial universe at time t) are 
locally isotropic (and, hence, locally homogeneous) 
spaces, i. e., are spaces of constant sectional curvature, 
and all physical parameters (e. g., the density of matter 
p and the Hubble expansion parameter h) are constant 
on each of these spatial sections. 

Now if V3 is complete and if on V3 

~7TKP - h2 > 0 (1) 

holds (where K is the gravitational constant and units 
have been chosen so that the speed of light c = 1), then 
V3 is a space of constant positive curvature and, in 
fact, is covered by the 3-sphere. It follows that V3 is 
compact, i. e., the universe is "finite." It is worth 
pointing out that V3 need not be open (infinite) if the 
quantity in (1) is zero or negative. t 

In this paper we wish to consider in what way the 
above closure result relies on the strong symmetry 
assumptions of the Friedmann models. A new closure 
theorem is presented in which the isotropy assumptions 
of the Friedmann models (which, of course, are not 
precisely satisfied in our own universe) are replaced 
by much milder physical assumptions. The proof will 
require a modest strengthening of the crucial 
condition (1). 

II. THE CLOSURE THEOREM 

In the cosmological models now to be considered, the 
mass-energy content of the universe is again repre
sented by an incoherent fluid or dust (no pressures) with 
the dust particles representing galaxies or clusters of 
galaxies. This representation seems reasonable for the 
present epoch of the universe. The energy-momentum 
tensor for a dust is given by 

(2) 

where p is the density of matter and u is the unit time
like tangent field to the world lines of the fluid. By the 
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equations of motion, these world lines are geodesics. 
As in the Friedmann models we assume the topology of 
space-time to be of the form 

M=lRxV3 (3) 

and again we make the simplication that the spatial 
sections vL parameterized by proper time, be orthog
onal to the fluid flow. 

Introducing coordinates x'" (a = 1, 2, 3) in v3, the 
metric in comoving coordinates takes the form 

ds2 =_dt2 + g"'8(x,t)dxa dxil , (4) 

where ga8(X, t) is the induced metric on the section V~ 
and U= a/at. No assumption of isotropy or homogeneity 
of the section V~ with metric g"'8 is imposed. Further
more, there is no requirement that the matter density 
p be constant on any section, nor that expansion about 
any point be isotropic. 

By letting 

gaa(x, t) dx'" dxil = G2(t) da2
, (5) 

where da2 is a metric of constant sectional curvature on 
V3 and the function G(t) is constant on each spatial sec
tion we obtain the form of the metric of the Friedmann 
models. 

Let X be a vector tangent to a section V~ at point P. 
Extend X along the flow line through P by making it 
invariant under the flow generated by U= a/at, 

[u,xJ=vux-vxu=o. (6) 

Here [ , J is the Lie bracket and V is the connection 
associated with the space-time metric. This vector 
field may be interpreted as a position vector tracking 
a nearby fluid molecule from the fluid molecule at 
X=p.2 

Let II X II = [ga8xa ,Xil]l/2 be the length of X. Note that, 
by construction, the X a are constant along the flow line. 
A positive time derivative, (a/at)!I X II> 0, indicates a 
recession of nearby fluid molecules in the direction of 
X, and a negative second derivative, (a2/at2)IIXII < 0, 
indicates a deceleration of the recession in the direc
tion of X. 

The overall expansion behavior of a small fluid ele
ment is determined by the expansion scalar e = divu. 3 

In our case e is given by 

(7) 

where b",a= - i(%t)g"'8 is the 0', 13th component in the 
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comoving coordinate system of the second fundamen
tal form B defined by 

B(X, Y) = - (vxu, Y) 

for vectors X, Y tangent to the spatial section V~. 
(Here ( , > denotes the space-time metric. ) We are 
now in the position to state the following theorem. 

Theorem: Consider the cosmological model charac
terized by Eqs. (2), (3), and (4) above. Suppose at each 
point p of some section V~ , o 

(i) there is recession in all directions, i. e. , 

for all vector fields X defined along the flow line through 
p, satisfying Eq. (6) and perpendicular to u, 

(ii) the rate of recession is decreasing in all direc
tions, i. e. , 

~IIIXII~O 
to 

for all vector fields X as in (i). 

Then if V3 is complete and 

(iii) inf(t1TKp - h2 ) = A > 0, 
v3 
to 

where h =to is the averaged Hubble parameter,4 V3 

is compact and 

diam(V~ ) ~1T~. o 

A couple of remarks before giving the proof. First, we 
emphasize that conditions (i) and (ii), which seem satis
fied at least at one pOint of the actual universe, do not 
demand that the recession or rate of recession be the 
same in all directions. Also, by introducing the mean 
length L, 

f = ~ e ('0: :t ) , 
the Raychaudhuri equation5 becomes for the particular 
cosmological model under consideration 

(8) 

(<1, the shear, is a scalar measure of the anisotropy of 
expansion). Thus, from strictly formal considerations, 
there must be an overall deceleration of expansion at 
each poin t of any spatial section. Finally, note that the 
matter density term in (iii) is half that appearing in (1) 
so that condition (iii) is slightly stronger than the 
analogous condition for the Friedmann model case. 

The proof employs a theorem of Myers, which states 
that if M n is a complete Riemannian manifold with Ricci 
tensor R jJ satisfying Ric(V, V) o:R jJ Vi Vi ~ a > 0 for all 
unit vectors V = Vi(a/ax i ), then M n is compact and 
diam(M n) ~ 1T Yn - lila. 6 

The Ricci tensor of space-time, Rii' is related in 
comoving coordinates to the Ricci tensor of ~o' Pall, 
by the equation7 

251 J. Math. Phys .• Vol. 18. No.2. February 1977 

R _ 1 a2 
1 a r 

Ot/l-2"atIgOt/l + 2:6 ot gO//l- 2bO/ b/l,.+PO//l, (9) 

where from Einstein's equations and Eq. (2), 

RO//l=41TKpg",/l' (10) 

Let ~ be a unit vector at some point p of l-io and extend 
~ along the flow line through this point by making it in
variant under the flow. In coordinates ~ = ~O/ (0 /oxO/), 
(a/ot)~'" = O. Then from (9) and (10) we find 

1 02 0 
=41TKP-"2a? 11~112-t6 at 11~112+21IvluI12. 

(11) 

Let~, e2, e3 be orthonormal vectors at p and extend 
e2 and ea along the flow line through p in the usual way. 
A simple calculation shows that B(~, ~)=- (o/at)II~1I at 
p, so 

IlvluI12=(:tll~lI) 2 +B2(~,e2)+B2(~,e3)' 
By substituting this equation into (11) and simplifying 
we are lead to 

RiCyto (~, ~) =: 41TKP - ~ 1/ ~ II + ( :t II ~ II) 2 - 6 :t II ~ II 
+ 2B2(~, e2) + 2B2(~, e3)' (12) 

Since, as is easily shown, 

o =: :t II ~ II + :t II e211 + :t II e311 at p, 

(:t II ~ Ilf - 9 :t II ~ II (13) 

= -at II ~ II :t II e211 + :t II ~ II :t II e311) . 
Using assumption (i) and the Schwarz inequality one 
checks that 

:t II ~ II :t II e211 + :t II ~ II :t II eall 

~ :t II ~ II :t II e211 + :t II ~ II :t II e3 11 + :t II e211 :t II e311 
(14) 

Furthermore, by assumption (ii) the inequality 

a2 

a?IIEII~o (15) 

holds. By combining (12)-(15) we obtain 

Ricv. (~, E) ~ 41TKP - 3h2 ~ 3A. to 

Our result now follows as a consequence of Myers' 
theorem. 

In the Friedmann case, with metric given by (4) and 
(5), II E II = C(l)/C(fo). One finds that 

(:t II ~ II) 2 - 6 :t II E 1/ =: - 2h2 

[compare with (13) and (14)J, 
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a2 

a(! II ~ II = - t1TKP 

[compare with (15)], and B(~,ei)=O, i=1,2. Then (12) 
becomes 

Ricv: (~,~) = 2 (t1TKP - h2) to 

as expected. 

If the fluid flow is not geodesic (as in the case of a 
perfect fluid with a nonzero spatial pressure gradient) 
but is still nonrotating, the metric can be expressed, 
in comoving coordinates, in the form 

ds 2 = _ rp2d& + g",~dxO: dx i3• 

The Ricci quadratic form on the spatial section V~ is 
then given by the equation 

RicVt(~'~) =RicM(~'~) _u2 11 ~II + (ull ~ 11)2_ au II ~II 
+ 2B2(~, e2) + 2B2(~, e3) + (1/rp) e(rp) 

- (Vt~, 'Yu u), 

where 

1 a 
u=--

rp at ' 

(16) 

V is the connection associated with the induced metric 
g",~, and ~ has been extended arbitrarily to some 
neighborhood of V~ and is invariant under the flow gen
erated by a/at. This equation differs from (12) only in 
the addition of the last two terms on the right-hand 
side. 

To prove the compactness of V3 in this case, it would 
suffice to show that there is a bound on the lengths of 
the minimal geodesiCS from some fixed point in V3 to all 
other points of V3

• Along any such geodesic we may ex
tend ~ so that V, ~ = 0, making the last term on the 
right-hand side of (16) equal to zero. Then by applying 
Myers' theorem directly to each of these geodeSiCS, 
we could conclude the compactness of V3 under the 
same assumptions as before (with a/at replaced by u) 
if we knew that the term ~2(rp) were nonnegative. In 
fact, it need not be; thus the term (1/rp)e(rp) in (16) 
appears to spoil the compactness result in this non
geodesic case. 

We remark, in closing, that it would be desirable 
to obtain some generalization of our closure result 
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which does not require the spatial sections to be 
orthogonal to the fluid flow (and, hence, the fluid to 
be nonrotating). 

Note added in proof: Recently we obtained a very 
satisfactory generalization of the closure theorem to 
the nongeodesic case. By replacing condition (iii) by the 
more general 

inf (Ric(;, ~) - 3h2) = A> 0, 
vi 

IItll=t 

and by making the additional requirement that the 4-
acceleration 'Yuu have an upper bound on vL 

sup II Vuu II = /1 < 00, 
vi 

we arrive at a new diameter estimate for v~ depending 
on IJ. and A and, again, are able to conclude the com
pactness of V3

, The proof requires a generalization of 
Myers' theorem" 

ACKNOWLEDGMENT 

I wish to express my sincere thanks to Professor 
Theodore T. Frankel for many valuable discussions 
and, in particular, for focusing my attention on Myers' 
theorem. 

IC. W. MIsner, K. S. Thorne, and J.A. Wheeler, Gravitation 
(Freeman, San Francisco, 1973), p. 725. 

2See , for example, M. P. Ryan, Jr. and L. C. Shepley, Homo
geneous Relativistic Co sm ologies (Princeton U. P., Prince
ton, N.J., 1975), pp. 48, 49. 

.3G. F. R. Ellis, "Relativistic Cosmology" in General Relativ
ity and Cosmology, edited by R.K. Sachs (Academic, New 
York, 1971), pp. 109-13. 

4See Ref. 3, p. 113. 
5See Ref. 3, p. 127. 
6The proof of Myers' theorem shows that if along a minimal 
geodesic joining two points with unit tangent V the inequality 
Ric (V, Vl ?: a > 0 is satisfied, then the length of the geodesic 
must be less than or equal to n-In -l/a. For a proof of 
Myers' theorem see, for example, J. Milnor, Morse Theory 
(Princeton U.P., Princeton, N.J., 1963), pp. 104, 10". 

7L. Landau and E. Lifschitz, Classical Theory of Fields 
(Addison-Wesley, Reading, Massachusetts, 1971), 3rd ed., 
p. 292. 

Gregory J. Galloway 252 



                                                                                                                                    

Higher spin states in the stochastic mechanics of the 
Bopp-Haag spin model 

Thad Dankel, Jr. 

Department of Mathematical Sciences. University of North Carolina at Wilmington. Wilmington. North 
Carolina 28401 
(Received 14 July 1976) 

The author has previously shown that the dynamically natural random variable representing angular 
momentum in the stochastic mechanics of the Bopp-Haag spin model has the expectation values predicted 
by quantum mechanics for spin = lI2. The result is generalized to all higher values of the spin. 

1. INTRODUCTION 

The history of attempts to reformulate quantum 
mechanics in terms of motions of classical bodies and 
fields at the microscopic level is a long one, extending 
back to the origins of quantum mechanics itself. One of 
the more recent of these attempts has been called 
stochastic mechanics, 1-3 This theory assumes universal 
Brownian motion and Newton's second law F= rna; it 
shows these assumptions to be mathematically equiva
lent to the Schrodinger equation for a broad class of 
physical systems. 

One advantage that stochastic mechanics has over 
other "hidden variable" theories is that it has no need 
for ad hoc quantum forces. 4 This advantage stems from 
the definition of the stochastic mechanical acceleration 
a, based on conSiderations of time-reversal symmetry 
and the theory of Markov processes. However, the main 
advantage of the stochastic mechanical viewpoint is that 
physical quantities are no longer operators, but random 
variables. To say this is not to disparage the massive 
body of understanding yielded by operator theory, but 
to point out that there are potentially important inSights 
to be gained by alternatively treating quantum mechani
cal systems in terms of the quite extensive and highly 
developed mathematical theory of random processes 0 

One of the quantum mechanical systems which has 
been studied from the viewpoint of stochastic mechanics 
is the spin model of Bopp and Haag. 5 The present author 
has shown3 that when the Bopp-Haag version of the 
freely spinning electron is cast into stochastic mechani
cal form, the random vector field L which is naturally 
interpreted as angular momentum has expectation values 
as required by quantum mechanics, 

(L) =rnhk, (1 ) 

(L2) = l(l + l)h2, (2) 

where k is the unit vector along the z axis, h is Planck's 
constant divided by 211, l = ~, and rn = ± ~, depending on 
whether one starts with a spin-up state or a spin-down 
state. The purpose of the present paper is to prove (1) 
and (2) for all allowable values of I and m: I nonnegative 
integral or half-integral, and rn = -l, -l + 1, ... ,I - 1,1. 
Thus, the compatibility of the stochastic mechanical and 
quantum mechanical treatments will be demonstrated 
for free particles of arbitrary spin. 
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2. PRELIMINARIES 

In this section we review the definition of stochastic 
mechanical veloCities, some facts about the rotation 
group, and the basic features of the Bopp-Haag spin 
modeL Since we are concerned only with free systems, 
many formulas are Simpler than the corresponding ones 
for motion in a force field. The terminology and notation 
are those of Ref. 3. 

Let the configuration space of a phySical system be 
a Riemannian manifold M. Let IjJ be a wave function 
satisfying the free Schrodinger equation 

hi~=-C1:;.'" f)[ ,/" 
(3) 

where 1:;. is the Laplace-Beltrami operator on M, and 
c is some constant. Put IjJ = exp(R +is), and define u and 
1J by 

u=2hdR, (4) 

1J =2hdS. (5 ) 

Then 1) is called the current velocity, and is identified 
with the ordinary classical velocity of the system whose 
quantum version we are examining; u is called the 
osmotic velocity, and arises from the assumption of 
universal Brownian motion superimposed on the classi
cal motion. The latter name derives from the theory of 
Brownian motion of particles suspended in a liquid, 2,6 

in which II is the velocity required of a particle to offset 
osmotic effects. We shall see that both u and 1J contri
bute to the angular mor.1entum-in particular, to its 
expectation values. 

Of course, the basic resultl
-

3 of stochastic mechanics 
is that the kinematics of Markov processes and F = rna 
(with a properly defined!) are equivalent to (3). How
ever, we do not need this result here, so we do not dis
cuss it further. 

We will be concerned in particular with M = 80(3), 
the group of rotations in three-dimensional space. We 
parameterize 80(3) with the Euler angle coordinates 
e, <p, X, following the convention of Refs. 3 and 5, Any 
rotation T may be written in the form T = T x ToT 4>, 

where T 4> is a rotation through angle <p about the z axiS, 
To is a rotation through angle e about the line into which 
T 4> takes the x axiS, and T x is a rotation through angle 
X about the line into which To takes the z axis. We de
note unit vectors along the axes of these rotations by 
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e 

FIG. 1. 

-;p, e, and X, respectivelyo See Fig. 1. We shall also 
denote e,¢,X and e,rp,Xby e1 ,e2 ,e3 and e11 e2 ,83 , 

respectively 0 

If k is any positive constant, we may endow SO(3) with 
the Riemannian metric gjj' where 

~k ° ° J (gjj] '= ° k k case 
° k case k 

Then the inverse matrix [gii] is 

l/k ° 
o J [g;i] '= ° 

1 cose 
k sin2 e - k s:n2 e . 

° 
cose 

- k sin2 8 k sin2 e 

Later we shall put k '= 28, where 8 is the moment of 
inertia of a spinning ball. 

(6) 

(7) 

We shall require means of passing from the current 
and osmotic velocities [With values in cotangent spaces 
of SO(3) 1 to the angular momentum L (with values in 
R3). We do this via the map U from any cotangent space 
of SO(3) to R3 defined by 

U(a;d8 i),=giia i OJ' (8) 

where the summation convention applies. 

The Haar measure dO on SO(3) is given by7 dO 

= sinO d 8 d ¢ dX. All probability densities and integra
tions will be With respect to this measure. The integra
tion J oom/dO, / a function on SO(3), means 
J~'=o J~'=o J~=o/(O, ¢, X) sinO de del> dX, the limits being 
clear from Fig. 1. In Ref. 3, where 1 = L the measure 
d 8 d¢ dX was used. However, it is easy to see that in 
this simplest case the two choices of measure yield 
identical results for \L) and (L~, and that the latter 
choice does not yield the correct (i. e., quantum 
mechanical) expectation values for 1 > ~ . 

In their spin model, Bopp and Haag5 consider a rigid, 
rigidly charged spherical ball. In the case of no exter
nal field, the Schrodinger equation is 

(9) 

where m is the mass of the ball, 8 its moment of iner
tia, and p and M the generalized linear and angular 
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momentum operators, respectivelyo Separating vari
ables, we are led to the eigenvalue problem 

(10) 

The eigenvalue problem for p governs the motion of the 
center of mass of the ball, which doesn't concern us 
here. The solutions of (10) have been found by Bopp and 
Haag5

: The eigenvalues are A.=l(l +1), with 1 
'= L 1, ~, 2 .. L 0 , " and for each such I, there are (21 + 1)2 
eigenfunctions of the form 

(11) 

where J.J., V= -1, -l +1, . .,,1 -1, l, and the d~u(e) are 
closely related to the matrix elements of the lth repre
sentation of SU(2). The eigenvalue of the z component 
of angular momentum is J.J., which plays the role of m 
in (1). Explicitly, we have5 ,s 

d~u (e) = [cos( 0/2) lV+I> [sin( 8/2) y-" P~=~' V+u [cos(e)], 

(12) 

where the p's are the standard Jacobi polynomials. 9 

NOW, p~B is defined only for (Y, j3"? 0; however, we use 
the following symmetry propertiess of the d~" to yield 
a formula Similar to (12) in other cases: 

d~,,(e)=(-I)V-"d:v_,,(e), v-J.l'" 0, v+J.l"'O, (13) 

d[,Je)=(-I)I+Vd:"v(8+1T), v-J.l?-O, v+J.l"'O, (15) 

We shall need the differential equation9 satisfied by the 
p~B, 

d2 d 
(1 - r)-2 p"B(X) + [f3 - CJ. - (Ci. + f3 +2)xl d- P"S(x) dx n x n 

(16) 

3. THE MAIN RESULT 

Theorem: ConSider the wave function )P~" given by (11). 
Let p =KlljJt" 12

, where K is a normalization constant 
chosen so that f oo(3)pdO = 1. Form the osmotic velocity 
u and the current velocity v via (4) and (5), and define 
the osmotic angular velocity W,' and the current angular 
velocity Wv by Wu = U(u) and wv = U(n), where U is given 
by (8) and the constant k of (7) is taken to be k=28, 8 
being the moment of inertia of the spinning ball. Define 
the angular momentum L by 

(17) 

Let ( ) denote expectation with respect to the probability 
measure pdO. Then 

(L) = J.lhk and (L2) = 1(1 + 1 )h 2
, 

where k is the unit vector along the 2 axis. 

PrOOf: We first treat the case v - jJ.?- 0, V + J.J.?- 0, so 
that representation (12) holds. Using (4) and (5), we find 

Wu = (h/8)[ - J.l csc(8) + v cot(e) - sin(8)(P '/p) 18, (18) 

(19) 
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Now, explicitly in terms of 1, j, k, the standard basis 
vectors in R 3

, we have 

9=cos(cp)1 +sin(cp)j, (20) 

(21) 

x = sin(e) sin(cp)l- sin(e) cos(cp)j +cos(e)k. (22) 

Performing the integration with respect to cp first, we 
find from (18) and (20) that 

(wu) = O. 

Also, (19), (21), and (22) yield 

(w) = j.Lhk/e. 

By (23), (24), and (17), the first conclusion of the 
theorem holds. 

(23) 

(24) 

For the second part, note that WIt and Wv are orthogo
nal, so that 

L2 = e2(w~ +w:). 

By a straightforward calculation with (18)-(22), this is 

L
2- 2[2j.L2+v2(1 +cos2 e)-4j.Lvcose 
-h sin2 e 

P' (P')2] +2(j.L - vcose)p + sin2 e p • (25) 

NOW, the normalization constant K = (41f /22V)C, where 

C = r
1 

(1 + xY'''(l - x)"-" (P~=~'V+" (xW dx, (26) 

as is easily seen from (11) and (12) by making the 
change of variable 

x=cos(e) (27) 

in the integral f 80(3) 1 <J!~" 12 drl.. The exact value of C is 
known,9 but we do not require it here. Hence, 

(28) 

In terms of the variable x, we find from (25) and (28) 
that 

(L~ = ~2 {{_I [2 j.L 2 + ,i(l +~) - 4/lvx](1 + X)V.,,-I 

x(1_xy-,,-lp2dx+ f:=_12(/l-VX)(1 +xY'''(l-x)"-'' 

xP P' dx + f :=-1 (1 + x-}V+I .. 1(1 - XY-"'I[P '(x) J2 dX} 

(29) 

where the prime denotes differentiation with respect to 
x, andP=P~:~'v·,,(x). Let Q!=v-J.L, {J=v+/l, n=Z-v. 
Then an integration by parts shows that 

13= _jl P(x)..!L [(1 +x)s.I(1 _X),,·l P'(x)]dx. 
dx 

-I 

Carrying out the indicated differentiation and USing (16), 
we find that this simplifies to 
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13 = n(n + Q! + IH 1) C = (Z - v)(Z + v + 1) C. (30) 

Integrating by parts in 12 , we find 

1 d 
12 = -/ P(X)-{[(fi- 0') -(J3+Q1)x-](1 +x).8 

dx 
-1 

X (1 - x)'" P(x)}dx. 

Upon carrying out the differentiation under the integral 
sign, we see that 12 appears again on the right-hand 
Side with a minus sign. Solving for 12 and simplfying 
yields 

12 = - ~ r p2(x)(1 + x)S-I(l - x)" -I [- (J3 + 0') + (J3 _ 0')2 
-I 

- 2(J32 - Q!2)X + (,8 + 1'1)(,8 + 0' + l)x2] dx. 

Expressing II in terms of 0' and ,8 and adding it to this 
last equation, we find 

11+12=(,8;0' + (J3:Q1)2)C=(V+v2)C. (31) 

From (29), (30), and (31), the second part of the 
theorem follows. This concludes the proof when v - J.L 
~ 0 and v + J.L ~ O. 

In the general case, first use (11), (12), and the 
appropriate one of (13)-(15) to express <J!~" in terms of 
a Jacobi polynomial P. Defining CI, J3, and n by P=P:s, 
we find in each of the three cases (13)-(15) that the 
integral expressions for I" 12 , and 13 and those of (29) 
above are identical when expressed in terms of CI, (3, 
and n [in the case (15), the formula9 p:S(_x) 
= (_I)np: S(x) and the change of variable x- - x are 
necessary J. Hence, as before, 

( 

CI + {3 (CI + (3)2 ) 
11 + 12 + 13 = n(n + CI + (3 + 1) + -2- + 4 C. 

This simplifies to the desired (U) = l(l + 1 )h2 in each 
case. The verification of the formula for (L) is even 
easier: Since (w.)=O, as before, we see that ,L) de
pends only on wv' and therefore only on the factor 
exp[i( /l cp + vx)] in ,p~", which has the same form in all 
cases. The proof is complete. 
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Group theoretic properties of nonlinear time evolution equations have been studied from the standpoint of 
a generalized Lie transformation. It has been found that with each constant of motion of the KdV type 
equation fxxx + a (f)fx + f, = 0 and of the coupled nonlinear Schrodinger equation fxx + a(f,g)+ if, = 0, 
gxx + a(g,f) - ig, = 0 one invariance group of the equations is always associated. The well-known series of 
constants of motion of the KdV equation and the cubic Schrodinger equation will be recovered from the 
invariance groups of the equations. The doublet solution of the KdV equation will be characterized as the 
invariant solution of one of the groups. In a more general context, it will be shown that the well-known 
equation of quantum mechanics (dl dt)( U) = ([iH, UI +oU!ot) can be generalized to a class of 
nonlinear time evolution equations and that if U is a generator of an invariance group of the equation then 
(dl dt)( U) = O. The class includes equations such as the KdV, the cubic Schrodinger, and the Hirota 
equations. 

INTRODUCTION 

In this paper, we study group theoretic aspects of 
time evolution equations of nonlinear waves, particular
ly of the Korteweg-de Vries (KdV) equationf""" + ff" + ft 
= 0 and of the cubic Schrodinger equation f"" +11 * 
+ift=O. 

Some time ago, Anderson, Kumei, and Wulfman 
proposed a generalization1 of the Lie-Ovsjannikov2- 4 

theory of invariance groups of differential equations, 
and applied it to a number of quantum mechanical sys
tems to systematically study dynamical groups. 5 Re
cently it has been shown by Ibragimov and Anderson6 

that this generalized transformation is an infinite 
dimensional contact transformation. 

It has been shown in the preceding paper! that the 
sine-Gordon equationfxt - sinf= 0 admits an infinite 
number of one-parameter invariance groups of this new 
type, with each of which one can associate a series of 
conservation laws. Although the generalization appears 
to broaden the usefulness of group theoretic analysis 
of differential equations, particularly of nonlinear ones, 
the physical implications of the new type of symmetry 
are still unclear in many respects. 

The aim of the present paper is to investigate some of 
the well studied equations of nonlinear waves8 from the 
standpoint of the generalized theory, and to gain a clear
er insight into the physical significance of the presence 
of the new kind of symmetry. It will be shown that some 
of the fundamental properties of the KdV and the cubic 
Schrodinger equations are the direct results of the 
existence of new groups. 

In Sec. I, we briefly review a few basic ideas of 
infinitesimal invariance transformations to fix notations. 

In Sec. II, we investigate group theoretic properties 
of the KdV equation and the related equations. The main 
results are: (1) With each constant of motion of the KdV 
type equation f""" + a(j)j" + f t = 0, one invariance group 
is associated, hence the KdV equation admits an infinite 
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number of invariance groups. (2) The doublet solution, 
as well as the singlet solution, of the KdV equation is 
the invariant solution (or generalized similarity solu
tion) of one of the groups. 

In Sec, III, we prove that with each conservation law 
of the coupled nonlinear Schrodinger equation fxx + a(j, g) 
+ ift = 0, gxx + a(g, f) - igt = 0 one can associate one in
variance group. The constants of motion of the cubic 
Schrodinger equation due to Zakharov and Shabat9 will 
be recovered from the invariance group of the equation. 

In Sec. IV, we investigate some general properties of 
generators of invariance groups of time evolution equa
tions H(t, Xi, f, fi' fii' 000) + ft = O. It will be shown that 
(1) A generator U of an invariance group of H + It = 0 
always satisfies the relation [fI, UJ + au/at = 0, where 
H is a Lie operator associated with H; (2) For a class 
of nonlinear time evolution equations, the equation 
(d/dt)(U) = ([H, UJ + au/at) can be generalized; in par
ticular, if U is a generator, then (d/dt)(U) = o. 
I. INFINITESIMAL INVARIANCE 
TRANSFORMATIONS 

We denote m-dimensional real and complex vector 
space by R m and Cm, respectively and we consider the 
following infinite direct sum of the spaces; by 
denoting C(N+1)k by~, 

V =RN 2' Cft, C' (T, Crt' C' CP"'CD CH, C' (I'···. (1) 
o 0 11k k 

The prime is to distinguish two spaces of the same 
dimensions. We denote the elements of C and C' by u 

k k k 
and v, thus the elements of V are 

k 000) N+l z=(x,u,v,u,v, ••• ,u,v, , xrR . 
11k k 

(2) 

The components of~, f are written as uP1P2oo·Pk' vP1PZ'''Pk 

where each index runs from 0 through Nl0: 

u=(u), 11= (v), u=(uo,ut> ... ,UN), v=(VO,VI,""vN), 
I I 

(3) 
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Now we consider an infinitesimal transformation in V 

Z=Z+I:Z, Z={O,1],l:,1],l:, .•• ,1],l:,"·), (4) 
11k k 

where 

1] =1]{Z;C), l: = b{Z;C), (5) 

and the components of 1) and' are to be determined by 
the formula k k 

11'l'2""k =D'l'2"'Pk1], bP1P2"'Pk =DI>11>2"'Pkl:, (6) 

where D1J ... m ==D;DJ ••• Dm with 

Di = art + (Ulau + Viav) + (uljaUj + Vlja Vj ) + 000 

(7) 

In this paper, the summation rule will be assumed for 
repeated indices. In (5), c denotes a collection of all 
the real and complex numbers appearing in the expres
sion of 1] or l:. We write (4) compactly in the usual way 
as 

Z = (1 +eU)z, 

with 

(8) 

(9) 

The operator U has the following property (see Appendix 
A for the proof): 

Lemma 1: If a function A(z) is twice differentiable 
with respect to all the variables, then (DiU - UDi)A(z) 
= 0 for i = 0, 1, ... , N. 

We consider a set of differential equations for func
tions I(x) and g{x), 

(lOa) 

u=/(x), v=g(x), t(=[(x), v=g(x), k=1,2, ••• ,co, 
k k (lOb) 

where I(x) and g(x) are functions of the (N + l)k-tuple 
k k 

I(x) = (/0,/1, .•• , IN)' g(x) == (go, g1' ••• , gN)' 
1 1 

I(x) = (foo,··· ,INN), g(x) = (goo,··· ,gNN), 
(11) 

2 2 

with/i"'j = 0 .. 1' .. 0"J I(x), gl,"j = 0xi 0" 0xjg(x). C in 
(lOa) represents a set of parameters (real or complex) 
appearing in the differential equation. Each solution of 
Eq. (10) defines a manifold in V which we call a solu
tion manifold. 

It is well known2-4 that a group transformation eau 

maps a solution manifold of (10) into another (or the 
same) solution manifold if and only if 

UFi(z;c)i] =0, i=1,2, (12) 

where ( •• ) I J indicates to evaluate the quantity under 
the conditions 

Fi=O, Dp '''1> Fi=O, i=1,2, k=1,2, ••• ,oo. (13) 
1 k 
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The operator U is then a generator of an invariance 
group. 

We define #-conjugation of a quantity A(z;c) 
=A(x, u, v, ••• , U, v;c) by 

k k 

A{z;c)# =A(x, v, u, ••• , v, u;c*), 
k k 

(14) 

where the asterisk represents a complex conjugation, 
An important subclass of Eq. (10) is 

FI(Z;C) ==0 with F2 = (Fl)#, 

U =I(x) , v=/{x)*,···. 
(15) 

For this equation, the generator U takes the form 

U =1]0u + 1]#ov + 1]I Ou + 111 #ov + ••• 

+ 1J,"'kou + (1]/OOOk)#O VI ... k + • '0. 
ieook 

(16) 

In this paper, we consider the infinitesimal transfor
mations of the type (4) which involves no transformation 
in x. This transformation, however, is not as special 
as it might look. Let us consider an infinitesimal trans
formation of a more general type2-6 

A A A A A A A O A1 AN 

z=z+€Z, Z=(~,1],?;,1],t,ooo), ~=(~,~ , ... ,~ ), 
1 1 

(17) 

where 
1'0. .... ~q 

1)Pj''''k_1Pk =Dpk 1]P1"'Pk_1 - Ul>j'''Pk_lqDpk ~ , 

EI>1'''Pk_1Pk =Dl>k Ep1"'Pk_j - VP1"·Pk_j~Pk~·· 
(18) 

It can be provedll that if we know the transformations of 
type (4), then we can also obtain the more general type 
(17): 

Lemma 2: If (4) is an infinitesimal invariance trans
formation of (10), then for an arbitrary choice of t ~, 
and t subjected to the conditions ii - g iU; =1], t - ~iV; = b, 
the transformation (17) is also an invariance transfor
mation of Eq. (10). Conversely, if (17) is an invariance 
transformation of (10), then so is (4) for 1) =fj _ giU/, 
!:=t-giVi' 

In the following sections, we write the operators (9) 
and (16) as 

(19) 

They, however, must be always interpreted as their 
infinite prolongation. Also, we use the following 
abbreviation: 

and 

f [A(tI, v)]f,gdx= f A(tI, v)dx. 

II. A GROUP THEORETIC ANALYSIS OF THE KdV 
EQUATION 

The equation of our interest is IU1 +1/1 +10 = O. 12-16 

The equation is a particular case of (10) for which 
F2 = 0, g= 0. In this section, we use t, x for xO, xl, and 
write coordinates such as uo, UtO,' 0 • as tit, url>···. 
Similarly, we write 1/0, 1710 •••• as Tit, 17x to···. Thus, by 

Sukeyuki Kumei 257 



                                                                                                                                    

definition 1)t =Dt1), 1)xt =DxDt1), etc. Also, because the 
equation involves a single real function, all the v's in 
the first section are to be ignored. 

A. A lie algebra of an invariance group of the 
KdV equation 

We write the equation as 

u=/(x, f), ux=lx(x, t), u t =It(x, f),···. 

(20) 

We look for an operator V =1)a u which satisfies condi
tion (12) for this equation. We assume the transfor
mation to be a generalized Lie type1 with 1) 

=1)(x, f, u, u,,' U,,'" u",;:" u""xx, uxxx"x)' The absence in 1) of 
coordinates corresponding to f derivatives may be 
justified for time evolution type equations in which the 
only t derivative contained is It. 

The application of Lie's algorithm3,4 for finding gen
erators leads to the following results: 

Vl = (fux - 1) au, 

V2 =t {xux - 3f(u""x + uuJ + 2u} au, 
v

3 = u"o"' V4 = (u,,"" + uu,,) au, 

ri" = (~un""" + uu""" + 2uxu"" + ~U2U,,) au, 

The generators form a nOD';emisimple algebra (see 
Appendix B for the definition of a commutator) 

[Vt, v2]=tV1, [ut, v 3]=0, [ut, V4]=V3, 

[ut,ri"J=v4
, [V2,V3]=tv3, [V2,V4]=V\ 

[v2,ri"]=tri", [V3,V4]=0, 

[v3, ri"]=O, [v4, ri"]=O. 

(21) 

(22) 

By making use of Eq. (20), and by applying Lemma 2, 
one can cast the first four generators into "genuine" 
Lie generators: They are equivalent to 

V1 = - fa" - au, V2 =t(- xa" - 3to t + 2uau), 

V3 =_o", V4 =a t • 
(23) 

This set of generators is well known, 14,17 The genera
tor ri", however, is new and its properties will be 
analyzed later. 

Let us consider operators au jaf = (0,1) au and 
H = (u""" + uu,,) au = u4• It is remarkable that all the Vi 
of (21) satisfy the relation [H, UI] + aal jaf = O. In Sec, 
IV, it will be shown that a generator of an invariance 
group of time evolution equations always satisfies such 
a relation. 

It is well known13 that the KdV equation admits an in
finite number of conservation laws. To study a possible 
connection between the present groups and the conser
vation laws, we need to know effects of infinitesimal 
invariance transformations on constants of motion, 

In his analysis of constants of motion of the time 
evolution equation H(x, f, u, U,,' u,,'" ••• , u(n» + ut = 0, 
u(n) =u~, u=j(x, f), Lax15 considered an infinitesimal 
transformation of a solution/(x, t) into a solution 
u =/(x, t) + Ecp(X, t), The function cP must satisfy the lin-
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ear equation 

Hu{f) cp + Hu (f) cp" + 0 •• + H (n){f) cp(n) + CPt = 0, 
x u 

(24) 

where Hu(j) = (aft)u=!, etc, and cp(n) = (ox>ncp(x, 0. We 
note that 1)(j) of a generator of an invariance group of 
the equation H{f) + It = 0 is a special realization of cp, 
The effect of the transformation on the constant of 
motion I(j) is 

I(j + Ecp) =I(j) + E(r(j), cp), 

(r{f), ¢) = a, I(j+ E¢) 1'=0' (25) 

The function r(j) is a gradient of the functional I{f). 15 

For the constant of motion of integral type, i. e., I(j) 
= J p(j) dx, the gradient has a simple expression: As
suming p(u) =p(x, t, u, ..• , U(kl), 

r(u)=pu-DxPux +D;pu"x + ••. + (_D)kPu(kl (26) 

In this case, we have 

(r(j), ¢) = J r{f) ¢ dx. (27) 

Lax observed 

(r(f), ¢) is a constant of the motion. (28) 

B. Constants of motion of fx x x + a(f)fx + f t = 0 and 
its groups 

Now we prove a theorem which establishes a relation
ship between a constant of motion of the KdV type equa
tion and its invariance group. We consider an equation 

fxxx + a(j) Ix + It = 0, (29) 

where a(j) is a function off, We assume that an initial 
value problem for this equation is well posed for a 
periodic boundary conditionf(x, t) =f(x + xo, t) or for a 
condition 1(- 00, t) =/(00, t) = O. Let us suppose that the 
system has a constant of motion of integral type I(f) 
= J p(j) dx. The limits of the integration are either over 
the period or from - 00 to 00. We prove: 

Theorem 1. If r(u) is the gradient of a constant of 
motion I(j) = J p(j) dx associated with the equation/""" 
+a(j)/,,+ft=O, then the operator V=1)0u which has 
1)(u) =Dxr(u) is a generator of an invariance group of 
the equation. 

Proof: It is sufficient if we prove {U(u"xx + a(u)ux + Ut)tj 
= O. We consider a transformation of a solution I to a 
solutionf + Ecp. Then, by (24), CPxxx + a(j)cpx + au(j)fx¢ 
+CPt=O. Thus, 0= Jr(j)(¢xxx+a¢x+a,Jx¢ + ¢t)dx. In
tegrating this by parts and assuming null contribution 
from the boundary terms, we obtain 0 = J {- D~r - Dx(ar) 
+ rauux - Dtr} f ¢ dx + (djdt) J r cp dx. The second term 
vanishes because of (28). Because we can prescribe an 
arbitrary admissible function for ¢ at initial time to, 
this equation implies {D~r + Dx(ar) - rauux + Dtrh = O. 
Differentiating this with respect to x, and defining 
1) =Dxr, we find {D~1) + 1)auux + (Dx1) a + D t1)} f = {V(uxxx 
+aux+ut)h=o. 

This theorem establishes a relationship between con
stants of motion and invariance groups of Eq. (29), 

The process from V to I involves an integration process 
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and not all the generators are integrable to I. In Sec. 
IV, we provide another scheme to connect a group to a 
constant of motion which can supplement such a non
integrable case. 

The application of the theorem to the generators (21) 
leads to (within constant factors), 

f1 = j (t tu2 - xu) dx, 13 = j t u2 dx, 

(31) 

f> = J (~U4 - 3uu; + t u;,,) dx. 

The generator U2 is not integrable. The constants (31) 
coincide with members of the set of constants of motion 
due to Miura, Gardner, and Kruskal. 13 The simplest 
constant 1= f u dx is missing; the reason is that it gives 
r = 1, hence U = O. In the last section, however, we 
show that one can associate this with the generator U2• 

Thus, we write j2 = f u dx. 

The fact that there exist an infinite number of con
stants of motion for the KdV equation means that the 
equation is invariant under an infinite number of groups; 
the situation is similar to the case of the sine-Gordon 
equationf"t - Sinf= 0. 7 

Now, we study properties of the groups associated 
with constants of motion of the KdV equation. First we 
review a few important properties of the gradient found 
by Lax15 and Gardner. 16 

C. Properties of gradients (Lax and Gardner) 

Lax has proved that the gradients associated with the 
constants of motion of the KdV equation has the follow
ing unique properties: 

(1) If r l (u) is a gradient of Ii = f pi (f) dx, i, j ~ 2, then 
r l(u)D" rJ(u) =Jij with Jii = polynomial in 

(2) Every solitary wave solution 

u = 3c sech2t rc (x - ct);: sex - ct) 

is an eigenfunction of the gradients 

res) = r(c)s, r(c) = eigenvalue. 

(32) 

(33) 

In the study of doublet solutions of the KdV equation, 
Lax, as well as Kruskal and Zabusky, 12 focused his at
tention on three constants 13

, r, and f. For these 
constants, the gradients are 

r 3 =u, r4 =u2 + 2u xx , 

r 5 =u3 + 3u2 + 6uu +.ll u x xx 5 xxn' (34) 

and correspondingly, 

r 3(s)=s, r 4(s)=2cs, r 5(s)=¥-c2s. (35) 

Another remarkable property of r(u) of the KdV equa
tion is due to Gardner, 

(3) If we define an operator Wi associated with rl(u) 
of r, i> 2, by 

(36) 
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D. Properties of Vi, i> 2 

We note the similarity between the generator Ul 

= (Dxrl) au and Gardner's operator Wi. They, however, 
are different in that the prolonged Ul involves terms 
such as (0) au, (0) au whereas Wi does not. Neverthe-

t xt 
less Gardner's result implies that two generators Ul 

and U J associated with II and Ii commute, 

(37) 

This is obviously the reflection of the fact that the KdV 
equation is a completely integrable Hamiltonian 
system. 18,19 

InCidentally, it is often useful to note that: If I{f) 
= f p{f) dx is a constant of motion associated with the 
differential equation F(x, t, f, fx, ft, fn' fxt, ftt> "0) = 0, 
and if U is a generator of an invariance group of F = 0, 
then the quantity I' = f {Up(u)hdx is also a constant of 
motion of the same equation. The application of this 
scheme to the KdV equation, however, fails to generate 
a constant; indeed, by making use of Eq. (26), Lax's 
result (1), and Lemma 1, we find 

j Ulpi dx= j6 (D!7]I)pi(k)dx= j6 7]f(-Dx)kpi ek) dx 
k U k U 

= j 7]lri dx = j (D"r l ) r i dx = j Dx Jli dx = O. 

(38) 

Although the method fails to generate a string of con
stants of motion, it has been found that U4 gives rise to 
the following recursive relation: 

0= ju4pldX=C :t Ii+1. (39) 

This relation has been checked up to i = 4. 

E. Properties of e"u i 

If u =f(x, t) is a solution of the KdV equation, then, 
by construction, a function u =j (x, t; a) = {eaul uh is also 
a solution provided a series L:;:'o{ak/k*)(UI)k}, exists. 
First, we show that this group transformation does not 
alter the values of the constants of motion Ii, 

(40) 

Proof: First, by (38), J{U Ipihdx = O. This must hold 
at initial time for it is a constant of motion: 
J{Ulpi}" (x) dx = 0 for any admissible initial condition 
f(x, 0) = /.l(x). It can be proved that this is possible 
only if Ulp} =Drhli(u), hli =: polynomial in u, u,,' un'···. 
Then, by using Lemma 1, (UI)kpi = (U I )k-1Drhli 
=D,,(U I )k-1hli. Thus, f{Pi};dx=f{pi+D"L;;"1(ak/ 
k! )(U I )k-1 h'ihdx= f {Pihdx. 

This result reminds us of quantum mechanics where 
group operations elllA

, e lbB do not alter the values of 
observables (A) and (B) provided [A, B] = O. Here 
operators U I and observables II are related by (30) 
and in fact the UI'S commute by (37). 

The relation (40) indicates that both solutions f(x, t) 
andj(x, t; a) will break up into the same set of solitons. 
To prove this we start from Lax's result (2). We sup
pose r to be a linear combination of r l associated with 
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the constants of motion I j of integral type. Differentiat
ing Eq. (33) by x and using the relationship between r 
and V, we obtain 

{Vu}.=y(c)Sx, s=s(x-ct). 

This and Lemma 1 give rise to 

{(V)"u}s = (yoJ" s = {(yDJ"u}so 

(41) 

(42) 

This relation implies that: For the solitary wave solu
tion (32), we have the operator identity V = yDx' Conse
quently, the group operation eaU has the effect of trans
lation in x when it is operated on the solitary wave 
solution, 

{eaUu}.(x_ctl = sex - cf + ay(c). (43) 

Now let us assume that the solutionf(x, t) splits into N 
well separated solitons as t - "", 

N 

f(x,t)-Li Sj(x-cjt+ Oj ) as t- oo • 
;=1 

(44) 

For such a wave profile, interactions between solitons 
are small, hence at least for small a we may assume 

N 

{eaUuh(x,tl-Li {eaUu}'j(X_clt+6jl as t - "". 
1=1 

In view of (43), we can write this as 
N 

(45) 

{eaUU}f(X,tl-tiSj(x-cit+o;+ay(c;) as t-"". (46) 

Thus, two solutionsf(x, t) andj(x, t; a) = {eauuh<x,tl of 
the KdV equation have the same asymptotic profile as 
t - "" except that the phase of each soliton is shifted by 
the amount ay(cjL 

F. Invariant solutions of the KdV equation 

One curious question would be whether there exists a 
solution which is mapped onto itself under the trans
formation eaU• Speaking in a more general context, a 
solution, of a differential equation F = 0, which is 
mapped onto itself by the invariance group of the equa
tion is called an invariant solution (or generalized sim
ilarity solution). 4 The necessary and sufficient condi
tion for f to be the invariant solution of eaU is obviously 

One of the best known invariant solutions will be the 
Green's function of the heat equationfxx - ft = 0, 

(47) 

f= (41Tt)-1/2 exp(- x2/4t). Here the group involved is the 
dilation group generated by V = (xux + 2tut + u) au (or 
equivalently V' =- xox- 2tot +uou)' 

It is well known that the singlet solution of the KdV 
equation (32) is the invariant solution for V = V4 - C-

1V3 

(= at + c-10,,). The simplest generalization of this is to 
consider a group generated by V = if' + P V4 + qV3

, p, q 
constants. Then the condition (47) yields 

if"xx"x + ffxx" + 2 fX/xx + ~lfx + p{fxxx + ffx) + qfx = o. 

An integration of this equation with respect to x, assum
ing f(± "", f) = 0, leads to the fourth order equation ob
tained by Kruskal and Zabusky,12 and Lax. 15 The nature 
of the solution was carefully studied by Lax, and the 
solution was shown to be the doublet solution. From a 
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group theoretic viewpoint, therefore, the doublet solu
tion of fhe KdV e~uafion is fhe invariant solution Of the 
group ~(U5+pr;4+.U ). 

The idea here is precisely parallel to Lax's; Lax 
uses a condition r{f) = 0 to characterize the doublet 
solution whereas we use {Vuh = 0; but they are related 
by (30). 

III. INVARIANCE GROUPS AI\I.D CONSERVATION 
LAWS OF NONLINEAR SCHRODINGER EQUATIONS 

The cubic Schrodinger equation - if xx - if '1 * + f t = 0 
is another well studied nonlinear equation. It is known 
to share many common properties with the KdV equa
tion. 9,18,19 In this section we study group theoretic 
aspects of conservation laws associated with a class of 
nonlinear Schrodinger equations. 

A. Conservation laws of nonlinear Schrodinger equations 

We consider a coupled nonlinear Schrodinger equation 

Uxx + a(u, v;c) + iUt = 0, Vxx + a(u, v;c)# - iVt = 0, 

u=f(x, f), ux=fx(x, f), ut=ft(x, t), •••• 

v=g(x,t), vx=gx(x,t), vt=gt(x,t),.", 

where a function a is subject to the condition 

au{f,g;c) = [au{f,g;c)]#, au = 0ua. (49) 

[See (14) for the notation #. ] Condition (50) amounts to 
requiring that the equation can be written as a 
Hamiltonian system, 

oH if oH . 
og=-Zt' 0f=zgt, (50) 

where oH/og and oH/ofare Frechet derivatives of 
H=f E{f,g)dx, E=energy density, Equation (48) re
duces to the cubic Schrodinger equation for the special 
case of a=u2v and g=f*. 

We assume that an initial value problem is well posed 
either for a periodiC conditionf(x, t) =f(x + xo, f), g(x, t) 
=g(x + xo, t) or for a boundary conditionf(± "", t) = 0, 
g(± "", t) = O. Let us suppose that the system described 
by (48) has a constant of motion I{f, g) = f p{f, g) dx 
where the integration is over the period or from - "" to 
+ 00. The following theorem establishes the relationship 
between the I and an invariance group of the equation, 
In the following, quantities OJ/ou and OJ/ov represent 
{OJ/of}f=u,g=v and {OJ/ogh=U,K=V' 

Theorem 2: If OJ/of and OJ/og are Frechet derivatives 
of a constant of motion I{f, g) = f p{f, g) dx associated 
with Eq, (48), then the operator V =i(OJ/ov) au - i(OJ/ 
ou) 0v is a generator of an invariance group of the 
equation. 

Proof: We consider infinitesimal transformations of 
solutionsf,g into solutionsf+E¢, g+E/ji. ¢ and /ji must 
satisfy the equations A = ¢xx +a.{f,g; c)¢ +av{f,g; c)/ji 
+i¢t =0, B =/ji"", +a.(g,f; c*)/ji +av(g,f; c*)¢ - i/jit =0. 
The effect of this transformation on I can be found 
easily; by integration by parts, we arrive at 

I{f+EcfJ,g+ E/ji) =I{f, g) +:[ (~; cfJ + ~~ /ji) dx 

'" I{f, g) + EO!. 
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Thus, d/dt 0[ == O. Next obviously, 

f( · of . Of) 0 
z of A - z Og B dx == • 

On integrating by parts this yields 0 = f(P1J + QI/J) dx 
+ (d/ dt) Of where 

p = - {U[vxx + a(u, v;c)# - iVt]h,K 

+ i[au{f, g;c) - au( g, /;c*)] ~; , 

Q = - {U[uxx + a(u, v;c) + iutJh,K 

+i[au{f,g;c) - au(g,/;c*)J ~~ . 

Because (d/ dt) 01 == 0, we obtain 

J (P1J + QI/J)dx= O. 

One can prescribe arbitrary admissible functions for 
1J and I/J at an initial time. Thus, the Eq. (*) implies 
that P and Q are identically zero. Furthermore, the 
second terms of P and Q are zero because of condition 
(49), hence, P = 0 and Q == 0 yield the equations to be 
proved. 

This theorem enables us to find constants of motion 
if we know the invariance groups of Eq. (48); the pro
cess involves a straightforward integration process 
(61/0/, OI/og) -1. However, we note that there may be 
a generator which is not integrable to a constant of 
motion. This theorem can be extended to a general 
Hamiltonian system. 20 

8. Invariance groups of the cubic Schrodinger equation 
and its conservation laws 

We look for the operator of the form (16) which satis
fies the invariance condition (12) for F1 ==/xx + /'l*-
+ ift = 0 and F2 = (F1)# = O. Assuming the transfor ma
tion to be the generalized type with 1] 

=1](x, t, u, v, ux, vx, ••• ,uxxxxx, vxxxxx), and carrying out 
Lie's algorithm, we arrive at the following eight gen
erators [writing only the first term of (16)J: 

U1 = (- hxu + tu,.) au, 

U2 = (ituxx + itu2v + ixux + iu) au, U3 = iuau, 

U4 = uxau, U5 = i(uxx + u2v) au, 

U6 = (uxxx + 3uvuJ au, 
(51) 

U1 = i(uxxxx +u2vxx + 4uvuxx + 2uuxv" + 3vu; +%U3v2) au, 

Us = [uxxxxx + 5 (uvuxxx + uUxv"" + 2vuxuxx 

+ uV"uxx + u" 2vx) + ;5 U2V2uJ a uo 

The first five generators can be cast into "genuine" 
Lie type operators by Lemma 2: 

[j1 =- ra x- iixuou, yj2 =-xox - 2to t +uou, 

lj3=iuou, lj4 = ia", lj5=-Ot. 
I 

The effects of the group transformation eaU , a real, on 
a solution/ex, t) can be found easily for i< 6, 

I' = exp[ - i(ax + a2t/2)/2]/(x + af, f), 

1= at(ax, a2t), 1= exp(ia)j(x, f), (52) 

t=f(x+a,f), F=f(x,t+a). 
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The remaining three generators are of the generalized 
type, and there exists, at present, no analytic method 
of finding corresponding global transformations. 

The constants of motion associated with the generators 
(51) can be found by the simple integration process; they 
are Ii = f pi dx where 

p1=xuv-it(uxv-uv), p3=uv, p4=iuxv, 

p5 = i(uxvx - iU2V2), p6 = i(uxxxv + i uuxv2
), 

p1 =ux,,v,,,, + iu3V3 - 2 (uxv + UV,,)2 - 3u"v"uv, 
(53) 

p8 =uxxx"xv + 5 (uuxxxv + U1fxV"x + 2u"uxt:v + uUx"vx + u~v,.) 

The operator U2 is not integrable. These constants of 
motion, except the first one, agree with the ones ob
tained by Zakharov and Shabat. 9 The phase shift opera
tor U3, the x translation operator if, and the t transla
tion operator if have given rise to the probability den
sity p3, the momentum density p4, and the energy den
sity p5. The first constant 11 also has a simple meaning 
if we consider the cubic Schrodinger equation as the 
Schrodinger equation for a particle with negative mass 
- i: The 11 represents the initial position of the particle, 

(xo) = (x - tV) = J f* • (x - t ~) / dx = [1, V = velocity. 

Let us define the Lie Hamiltonian by 

H =(i ~!) 0u - (i ~~) 0v = a5, II = energy =f 5
• (54) 

Then, we find that the operator U i of (51) satisfies the 
relation [H, U I ] + oUi /ot= 0 with 

OU (61
i
)' I 61

i
) 

3t=i~tr;;; ou- i ,a t 6,; avo 

We note that the second generator U2 which is not re
lated to a constant of motion also satisfies the relation. 
A general analysis of this property of the generators 
will be given in the next section. Some of the other com
mutation relations among U i are [U i , U 'J = 0 for 
3~i,j~8. 

IV. GENERAL PROPERTIES OF GENERATORS OF 
INVARIANCE GROUPS OF TIME EVOLUTION 
EQUATIONS 

Let us assume that Eq. (15) is a time evolution type: 
x O = time coordinate, 

F 1(z;c) =H(z;c) +uo= 0, 

F 2(z;c) = [H(z;c)]# +vo=O. (55) 

To carry out a consistent analysis, we must take into 
account the relation (13), 

(56) 

We define two operators associated with JPl and U by 

H=Hou+H#ov, 

au 
-;-:-:0 = (0 01) 0u+ (0 oT)#ov' 
vx:r x 

(57) 

(58) 
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As was mentioned in the first section, they must be 
interpreted as their infinite prolongation. 

By the definition of a time evolution equation, H is not 
a function of the coordinates corresponding to xO-deriva
tives such as u OI, v120' In such a case, we can always 
express any coordinate of xO-derivatives in terms of 
other coordinates by making use of the relations (55) 
and (56). Thus, we assume, without a loss of generality, 
that 1) is free of these coordinates. 

A key in the present analysis is to write Eq. (55) as 

(H +Do)u =0. (59) 

We first prove: 

Lemma 3: If U is a generator of an invariance group 
of the equation H + Uo = 0, then under condition (56) we 
have [u,H]+au/axo=o. 

Proof: We have [U,H] + au/axo =aa" + a#a v with a 
= UH - HTJ + a xo TJ. It is sufficient if we prove that a van
ishes under (56). Indeed, 0= U(H +uo) = UH + DoTJ = UH 
+ 0xoTJ + UoTJ" + VoTJv + ••• = UH + a oTJ -Ha,,-H#a v _ 000 

= UH + a ° _ H1J. x 
x 

NOW, we define the following quantity: 

(U) = Re J (vUu)u=f(x) dxI dx2 ••• d?, Re = real part, 
v=I*(x) 

(60) 

where the integration should be taken over the whole 
space of interest. Obviously (U) is a function of XO only. 
The following lemma describes how it develops in time 
for a class of nonlinear systems: 

Lemma 4: If H of the equation H + Uo = ° satisfies the 
equation 

and if all the boundary integrals 

J:(UTJjoOOkH"iJ'''kL/(x) Vi dn 
v=I*(x) 

and 

(61) 

vanish for v = (vI, ... , ~) = normal vector on the boundary 
surface, then 

-b (U) =([U,H] + Fxo) . (62) 

Proof: For brevity, we write (60) as (U)=Ref vUudx. 
Then, we have d/dxO(U) = Re f(voUu + vDo Uu) dx 
= Re f[ - H#1) + v(a U /axo - HU) u] dx. Here, we have used 
the relations (55) and (56). On the other hand, we have 
(UN> =Re fvUHudx=Re fVTJiO"JH". dx. Applying 

IOU) 
Green's theorem repeatedly, and uSlllg the hypotheses, 
we find (UN> = Re J(- H#TJ) dx. Putting these two together, 
we obtain (d/dxO)(U) = ([U,H] + au/axo). 

The combination of Lemma 3 and 4 leads to a method 
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to associate a conserved quantity with an invariance 
group of the equation: 

Theorem 3: If the operator U defined by (16) is a gen
erator of an invariance group of the equation H + U o = 0, 
and if H satisfies all the conditions in Lemma 4, then 
the quantity (U) defined by (60) is a constant of motion, 
i.e., d/dxO(U)=O. 

We note that in proving this we did not assume the 
quantity J f*(x)f(x) dxI ... dxN to be independent of time. 

Lemma 3 can be generalized to a set of nonlinear 
time evolution equations of the form 

Hi+U~=O, Hi=Hi(x,u,u,u, ... ,u), i=1,2, ... ,M, 
1 2 7 

where u= (U 1,U
2

, ••• , uM
), u= (ut , u2

, ••• , uM
) 

k k k k 
and u i =fi (x), etc. In this case we have 

(63) 

Lemma 3': If U =TJia I is a generator of an invariance 
groupofEq. (63), then" we have [U,H]+ou/axo=o 
where H =nto i and au /oxo = (a oTJ i

) 0,,1. 
U x 

For Hamilton's equations of a field [ui = P = p(x), 
u2 = Q =q(x)] 

1)jj OH 
oQ +Po=O, - oP +Qo=O, 

we obtain the familiar expression 
OU . ali an 

(U,H]+ axo =0, with H= aQOp- apoQ' 

The theorem above can be specialized to a real dif
ferential equation: If H(x, u, u, u, ••• ,u), in the equation 

1 2 , 
H + Uo = 0, satisfies an equation 

H + uH" - DI(uHul ) + 0 0 0 + (-1)'DpI ... p (uH" ) = ° 
• Pl···P• 

(64) 

and if all the surface integrals fs[UTJJ"'kHUI .. )U=/(:<) Vi dn 
vanish for S = boundary, then the quantity (V) 
= fv[uUu]u=f dxI ••• d? is a constant of motion. Here, 
v = the whole space inside S. 

The following equations which have been attracting 
considerable attention in the study of propagation of 
nonlinear waves satisfy the condition (61) or (64): 

generalized Korteweg-de Vries equation 

cubic Schrodinger equation in n dimensions 

Hirota equations 

However, the heat equationfxx-ft=O and Burgers 
equation fn +ff:. - ft = 0, both of which represent a dis
sipative system, do not satisfy Eq. (64). 

The application of Theorem 3 to the KdV equation 
and to the cubic Schrodinger equation has turned out to 

Sukeyuki Kumei 262 



                                                                                                                                    

produce only a few constants of motion, 

KdV equation: 

(Ul)=_ J udx, (U2) = J iu2dx, 

(cr)=O, fori>2. 

cubic Schrodinger equation: 

(U2
) = J i uu* dx, (U t ) = 0 for i> 2. 

v. CONCLUDING REMARKS 

We have shown that provided one considers the 
group transformation which is more general than the 
one considered by Lie, one can associate one invariance 
group with each constant of motion of a class of physical 
systems. Thus for such a system one can derive the 
constants of motion by finding the invariance groups of 
the equation. One of the best known methods of finding 
conservation laws is to use Noether's theorem. The 
difference between the two is that the groups in the pres
ent approach leave the differential equation invariant 
whereas the groups in Noether's theorem leave an 
action integral invariant. 

In the following communication, a generalization of 
Theorems 1 and 2 will be discussed. 
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APPENDIX A: PROOF OF LEMMA 1 

It is sufficient if we prove DoUA = UDoA. To avoid 
complex indices, we represent a set of indices i ... k 
appearing in the expressions (7) and (9) of Do and U by 
a circle 0 or by a dot 0, and write Do and U as 

where the sign 2;0 indicates a summation over all the 
parenthesized quantities in (7) and (9). Then, by the 
definitions of Do and U, 

Using Do TJo =TJoo = UUoo, Do to = ~oo = UVoo, 
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The first term is 

~(TJPoAuo +tpoAv) 

=~mJAoUo +~(Uo.AUou. +Vo.AUov)] 

+tJAovo +~(Uo.Avou. +va-.4vov)]} 

=~(TJoAouo +toA ov) +~u~(ryoAUoUo 

+toA Uov) +~vo~(TJoAvouo +toAvov) 

Hence, (*) gives Do UA = U[A o + ~ (uooAuo + vooAvo)] 
=UDoA. 

APPENDIX B: A COMMUTATOR OF GENERALIZED 
LIE TYPE OPERATORS 

We consider two operators of the form (19), 

ut=::TJlou+~lov, U2=TJ20u+t20v. 

We must interpret these as simplified representations 
of (9). The commutator of the two is defined as 

[ut, U2] =:: [(utTJ2) - (U2TJ1)] au + [(U1t 2) - (U2tt)] 0v + ... 

+ [(U1TJ~"'k) - (U
2TJf"'k)] au. ,···k 

We write this as 

U = [ut, U2] =TJou + l;0v + •.• +TJt"'k au 
t···k 

We prove that this satisfies the condition imposed on 
(9), i. e., the condition (6). In fact, by applying 
Lemma 1, 

TJt"'k = utTJ~"'k - U
2
TJl"'k = U1D j "' k TJ2 - UZDt"' k TJl 

=Dt ••• k (U1 TJ2 - U2TJ1) =D j ."k TJ· 

Similarly ~j"'k =Dj". k I:. Therefore, the operator ob
tained from the commutator of two operators of the 
form (9) also assumes the same form. 
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It is shown that the results given by Letelier and Tabensky [1. Math. Phys. 15. 594 (1974)] regarding the 
solution of Einstein-Maxwell equations for plane symmetry will be modified after suitable correction of an 
error in their paper. Further appropriate exterior solutions. which satisfy the conditions of fit at the 
boundaries of plane symmetric charged dust distributions. are obtained. One such exterior nonstatic 
solution can be transformed to a static one. which is a member of the general class. 

INTRODUCTION 

In a recent paper Letelier and Tabenskyt have given 
the general solution of Einstein Maxwell equations in the 
charge-free empty space, where both the metric tensors 
g",v and the Maxwell field tensors F ",v remain invariant 
under the group of motions that characterize plane sym
metry in the sense of Taub, 2 The work of Letelier and 
Tabensky, however, contains an error in sign in the 
field equations and the results given therein are modi
fied to a significant extent after suitable corrections. It 
is found that a class of the solutions, which is apparent
ly time dependent in their case, is indeed a class of 
static solutions. 

In the second part we have considered the problem of 
matching of some of the solutions given earlier by De3,4 

for the interior of plane symmetric distributions of in
coherent charged dust to their corresponding exterior 
metric. One such exterior solution obtained in the same 
comoving system used for the interior, is found to satis
fy the conditions of fit at both the boundaries of the plane 
symmetric charged dust distribution, which will finally 
collapse. 

It is also interesting to note that a suitable exterior 
nonstatic metric matching with the corresponding inter
ior one in another case given by De4 can be transformed 
to a purely static metric, which is a member of the 
general class of solutions mentioned earlier. 

1. DISCUSSION OF THE GENERAL SOLUTIONS 

The final forms of the Eqs. (10) and (11) of Letelier 
and Tabensky, after a suitable correction of sign should 
be 

and 

J.1.,Ot + J.1.,oJ.1.,t = ike(W-2", )(Ci + C~). 

Their Eq. (21) must then be written in the form 

2e'" (e'" 12)' + ~k(Ci + cD + C3e'" 12 = O. 

(1) 

(2) 

(3) 

It can be shown that for C 3 ?o 0, the metric reduces to a 
static one. Particularly for C3 = 0, the solution is 

e"'(X)=[C4-~k(Cl+C~)x]2/3, (4) 
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contrary to the time dependent solution obtained by 
Letelier and Tabensky. On the other hand, when C3 < 0, 
there are, however, either time dependent spatially 
homogeneous solutions or static solutions discussed in 
Ref. 1. 

2. MATCHING OF THE PLANE SYMMETRIC 
CHARGED DUST METRIC WITH THE 
CORRESPONDING CHARGE FREE 
ELECTROVAC SOLUTION 

1. Exact solutions corresponding to the interior of the 
plane symmetric charged dust distributions were given 
by De. 3,4 He had further shown that such distributions 
would finally collapse. We consider one such solution 
which is given in the form3 

ds 2 = (R + T)-4 15 dt2 _ (R + T)-215 dx2 _ (R + T)4 15(dy2 + dz 2), 

(5) 

F01=~(R+Tt1/5R', 41Tp=41Tlal=~(R+T)-3/5[-R"], (6) 

where T = (at + b), a and b being arbitrary constants. R 
is any function of x subject to the condition R" < 0 in the 
interior region, so that the matter density may remain 
positive. The symbol' stands for the differentiation 
with respect to the x coordinate. We note that since in 
this case R /I is negative everywhere in the interior re
gion, the charge density is of the same sign throughout. 
One should note further that here we take FOt as the only 
nonvanishing component of the Maxwell tensor without 
loss of generality in view of the duality transformation. 
N ow if we choose R' = const, the solution reduces to 
that of empty space-time containing only the nonnull 
electromagnetic field. It is thus worthwhile to find a 
suitable function R (x), so that R" vanishes at the 
boundaries. We choose 

R"=(x2- (\!2), (7) 

(\! being a constant and at the boundary x = ± (\!. The form 
(7) satisfies the requirement R" < 0 for x 2 < (\!2 that is 
within the interior of the charged dust. The relatlOn (7) 
immediately gives 

Further, if we assume that the electric field vanishes 
on the y-z plane passing through the origin of the 
spatial coordinates or, in other words, the central 

(8) 
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plane of symmetry FOl = 0 at x = 0 so that {3 = O. One 
then gets for the interior 

R = (x4/12 - a 2x 2/2 +C), (9) 

where C is the integration constant. 

Now at 

x=+a, R=- ~a3 

and at (10) 

x=- a, R=+~a3, 

so that the matter-free and charge-free space with non
vanishing electromagnetic field tensor FOl is separated 
into two regions by the bounded charged dust distribu
tion. The corresponding line element can be written in 
the same form as (5) with 

(11) 

in region I and 

R (x) = (~a3x + 1') (12) 

in region II. The constants 1', a, and C appearing in 
(9), (11), and (12) are related in view of the continuity 
of R(x) at x ± a and the necessary relation is 

a 4 =4(y_ C). 

We can thus go from region I to region II by the trans
formation x - - x, and the metric along with its first 
derivatives are seen to be continuous across the bound
aries x =±a. 

2. Following almost the same procedure one can find 
the exterior solution corresponding to another simple 
interior solution given for a plane symmetric nonstatic 
distribution of charged dust in the form (De4) 

ds 2 = (X + G)-2/3(dt2 - dx2) - (X + G)2/3(dy2 +dz2) (13) 

with 

and 

(14) 

where X is an arbitrary function of the spatial coordi
nate x, subject to the restriction that X" < 0 in the in
terior and G is a function of time written as 

(15) 

kl and k2 being arbitrary constants. 

By the same arguments given previously one can 
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write the corresponding exterior metric in matter-free 
and charge-free space with a nonvanishing electric field 
by putting X' = const and this in turn will be determined 
from the field equation [cf. Eqs. (2.7c) of De4] 

R~+Rl=2FoIFol 

which gives the relation 

9k~ _X,2 = _ 9A2. 

(16) 

(17) 

Here the electromagnetic field tensor FOl is expressed 
in view of the Maxwell equations 

FOl =A/ (- g)1I2, A being an integration constant. 

The relation (17) gives directly 

(18) 

We write 3kl = a and ± 3(k~ +A 2)112 = {3, so that {32 > a 2. 

Thus the desired metric is expressed by the line 
element 

ds 2 = (at + (3x +yt2/ 3(dt 2_ dx2) - (at + (3x +y)2/3(dy2 +dz 2), 

(19) 

where I' is a constant. 

The metric (19) can now be easily transformed to a 
purely static one by a coordinate transformation of the 
type 

Such a transformation, which is apparently a Lorentz 
transformation is allowed because in this case {32> a 2• 

The transformed metric is thus, omitting the bars over 
the coordinates, 

ds 2 = [{3(1 - a 2/ (32)1/2x + 1']-213 (dt2 - dx2) 

- [(3(1- a 2/(32) 1I2x +YF/3(dy2 +dz 2) (21) 

which is a member of the general class of solutions in 
(4) given earlier (Patnaik5). 
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By extending the Gel'fand-Shilov regularization method to products of locally integrable functions it can 
be shown that the nonlinear Klein-Gordon equations 02 u/ot2 -02 u/oxr - ... _a 2 /ox~ 

+ k u 2p + I = 0, where k = const > 0, n ~ 3, P = integer ~ I, have causal solutions which have no 8 singularities. It 
is further shown that this also can be expected for the nonlinear Dirac equation "h o-.jJ/oxx + [2 -.jJ( ;p-.jJ) = o. 

INTRODUCTION 

The following notation will be used: 

a2 a2 a2 
D=~-~-"'--;:;-:-:z, at aXl ax" 
x = (t, xl' ••. ,x") E IR"'l, r = (xi + ... + x~)ll 2, 

dx=dtdX1" 'dx", 

K = {x I t2 - -y2 ?- o} (light cone), 

K, = ~ I t?- r} (forward light cone), 

K = {x It", - r} (backward light cone). 

We shall consider wave equations 

Du + ku2P'1 = 0, k = const > 0, 

for n?- 3, P = integer ?- 1. A causal solution of (*) is a 
distribution with support in K which is a weak solution 
of (*) defined in a suitable sense. Causal solutions of 
(*) have been studied by applying either a limit process 
(cf. Ref. 1) or a class calculus of distributions (cf. 
Refs. 2 and 3). Both methods have led to the same re
sult: If (*) has a solution depending on s = t2 - -y2 which 
is analytic in a neighborhood of s = 0, then (*) permits 
a causal solution with support in K which has a 1) term 
concentrated on s = O. The same condition granted it 
had been shown that then the equation 

Du + ku2P '1 = 1),,=0 (**) 

permits a causal solution with support in K, (in KJ 
which has a 1) term concentrated on t = r (on t = - r). In 
particular for n = 3, P = 1, it has been shown that such 
solutions exist [they exist for Eq. (*) in general]. Now, 
Eq. (*) also has solutions which are singular at s = O. 
These solutions are consts-1/2P or s-l/2Pj(s) where j is 
bounded for s ?- 0 but oscillates increasingly if s - 0 or 
s - "" [that is, the zeros of j have an accumulation point 
at s = 0 and s = "", the functionj behaves, for example, 
like the function cos(logs)]. Our paper deals with these 
solutions. By extending the Gel'fand-Shilov regulariza
tion method to products of locally integrable functions 
and applying it to Eq. (*) we shall prove that Eq. (*) has 
causal solutions with support in K, K" and K_ which 
have no 1) singularities but singularities of the above 
type, i. e., singularities which are algebraic (branching 
points). Apart from the different type of singularities 
these solutions differ from the 1) type solutions by the 
following properties: First, their asymptotic behavior is 
like s-1/2 whereas the 1) type behaves like s-l for s _ "". 
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Second, the retarded (advanced) solutions with support 
in K, (in KJ do not require an additional 1),,=0 term on 
the right-hand side of Eqo (*), i. eo, they satisfy Eq. 
(*) instead of (**)0 Third, the sum of an advanced and 
a retarded solution yields a solution with support in 
K-despite the nonlinearity of (*). 

1. AN EXTENSION OF THE GEL'FAND-SHILOV 
REGULARIZATION METHOD 

Dejinition 1: Let u : MX Go - a;, ,'vI C R"'t, Go C a;, and 
F:u(MxGo)-a; be such thatF[u(x;X)], xEM, XE Go, 
is locally integrable with respect to x on M for all X in 
Go. Then the distribution F[uM(' ; X)] shall be defined by 

(F[u M(' ; X)], cp) = fMF[U(X ; X)] cp(x) dx, cP E C~(IR"'l). 

If the above expression is analytic with respect to X 
on Go for all cP E C~ (IR"'l) and has an analytic continua
tion into some GC <l' then the distribution F[uM('; X)], 
XE G, is defined by analytic continuation (= a. c. ), 

(F[uM(o; X)], CP)I.EG 

= a. c. (F[uM(o; X)], CP\EGo' CPE C~(IR"'l). 

Remark 1: If u(x;x) is locally integrable then for F == 1 
(= identity) our definition yields the usual Gel'fand
Shilov regularization (cf. Ref. 4). Therefore we call the 
above construction an extended GS-regularization. For
mally it can be looked upon as a multiplication rule for 
certain distributions, so one might be tempted by it to 
construct algebras of these distributions. This is per
fectly all right as long as one does not require these 
algebras to be derivation algebras (under differentia
tion). In this case some additional rules would have to 
be set up. However, for the problems treated here no 
such algebraic finesse is needed. 

Dejinition 2: Let u(·; X) and F be such that the dis
tributions uM(· ; X) and F[UM(' ; X)] exist in the sense of 
Definition 1 where M is one of the following sets: 
K, K" K_. If for some Xo depending possibly on M and 
all CPE C~(IR"·l), 

(OuM(o; Xo), cp) + (F[UM('; AO)], cp) = 0, 

then uM(o ; Xo) shall be called a (weak) causal solution of 

Ou +F(u) =0 

in the sense of an extended GS regularization; u M(·; Xo) 
is called retarded or advanced in case M=K. or M=K_ 
accordingly. 
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2. CAUSAL SOLUTIONS OF WAVE EQUATIONS 
o u + ku 2p + , = 0 

Theorem 1: Consider 

Lu+ku2P +1=0, k=const>O, (1) 

where n? 3 p = integer? 1. Let the distribution P1, 
ReA> - 1, be defined by 

(PM' cp) = J (t2 - yZ)A cp(x) dx, cp c: C; (IR"+I). 
M 

Then 

UM('; - 1/2p) = l{np - p - 1)/kp 2J1/2Pp "M112P , 

for M = K, K., K_, is a causal solution of (1) in the 
sense of an extended GS regularization. 

Proof: Let AC: «:, - j -1*A* - j - (n + 1)/2 
(j=0, 1, 2,000). For M=K, K+, K_ there holds the 
identity (cf. Ref. 5) 

(DP~t, cp) = 4(A + l)(A + (n + 1)/2)(p1, cp), cp E C~(IR"+l). 

(2) 

Let u(x; A) = C(t2 - r)\ c = const. Then u(x; ;\) is locally 
integrable for ReA> - 1. Hence by Definition 1 

uM(·; A) = cP1 

is defined by analytic continuation for all A E «:, 
-j-1*A*-j-(n+1)/2 (j=0,1,2,oo,). Using the 
identity (2) we obtain for A = - 1/2p, P = integer? 1, 
n? 3, and c = [(np - p _1)/kp 2)1/ 2P after a short 
calculation, 

«(CuM)(o ;-1/2p), cp) = - kc 2P+1(pj}-1/ 2P, cp), cpc: C;(IR"+l). 

Now let F(u) = ku2P +1• By Definition 1 

F[u M(' ; A») = kc2P+lp~2P+l) 

exists for - j -1*A(2p +1)* - j - (n+ 1)/2 (j= 0,1,2,000), 
so we may choose A=-1/2p, n?3, p=integer ?1. 
Hence for cpc: C; (lR"+I) 

«(Du M)(o ; - 1/2p), cp) + (k[u M(' ; - 1/2p) )2P+l ,cp) = 0. 

This proves the assertion. 

Remark 2: Both P; and P; for ReA> -1 are locally 
integrable and the int~rsectio~ of their supports is the 
singleton {O}. Consequently P; P; for ReA> -1 is the 
zero function; its analytic continuation is trivially the 
zero function for all AE «:. Since on the other hand, 
P~=P; +P; , we have-despite the nonlinearity of 
Eq. (l)":"'a li~ear superposition: UK=UK+ +uK_. 

Theorem 2: Consider 

Du+ku3=0, k=const> 0, 

for n= 3. Let 

u(x; A) =csAcn(alogs + b), s = t2 - yZ, 

where a, b, c are real constants with b arbitrary, 
a * 0* c, and cn means cosinus amplitudinis with 
modulus K, where 

8a2K2=c2k=1+4a2,0<K<S1. 

Then UM(' ; -1) for M = K, K+, K_ is a causal solution 
of (3) in the sense of an extended GS regularization. 
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(3) 

Remark 3: The condition ° < K <S 1 is not obligatory. 
If K' = (1- K2)1/2 and if we replace, for example, 
g= a logs + b either by K'g or (1 + K)g and K by iK/K' or 
2K1/2 / (1 + K) correspondingly, then the resulting func
tions can be treated exactly as we treat the example 
considered here. 

Proof of Theorem 2: The proof will be in three steps 
for Ivl = K; for ivl = K+ and M = K_ the proofs are com
pletely analogous and therefore will be omitted. 

(i) Let 

V(X;A) = SAW(Z ;A), Z = a logs + b, 

and assume 
~ 

w(z ;A) = ~ c m(A) exp(imaz), a = real cons t * 0, 
m= .. OO 

to be uniformly convergent on the real line with respect 
to z for each complex A and the c m(A) to be entire func
tions of A. If ReA> - 1 then V(X;A) is locally integrable 
on K with respect to x. Let CPE C~(IR4) and 

cp(t, r) = fn3 cp(x) dQ,3, 

where Q,3 is the surface of the unit sphere in IR3. Let 

<J!(t, r) = i[cp(t, r) + cp(- t, r»). 

Substituting t=r(l + T)1/2, we get for ReA>-l 

(vK (' ; A), cp) 

= fK v(x; A) cp(x) dx 

= f.~o 1,.:0 yZA+3 TA(1 + T,-1/2 W(Z;A) <J!(rv'"f+T, r) drdT 

~ 

= ~ f':o TA+imil(l + T)-1/2 .to Cm(r;A) <J!(r-i1+T, r)drdT, 
111=-_Q(l 

where 

C m(r;A) = c m(A) yZA+3 exp{ima [a 10g(yZ) + b)}, (3 = aa. 

Let 

<Pm( T; A) = (1 + T)-1/2 1,.:0 Cm(r; A) <J!(rV1+T, r) dr. 

Then <Pm(' ;A) is C~ on (-1,00) and <Pm(T;A) =0 if T? TO(<J!) 
for ReA> - 2 and all integers m. It follows that 

exists by analytic continuation for ReA> - 2, A * 1 + im{3, 
m = integer. 

(ii) Let w(z) = cnz. Then (cf. Ref. 6) 
~ 

w(z) = 6 em exp(imaz), a = real const* 0, 
m= .. oo 

uniformly. Let 

Tl : W - [a2D2 + a(2A + l)D + A(A + l»)w, D =d/dz, 

Tz :w-w3. 

Then (T1w)(z;A) and (T2w)(z) too can each be expanded 
in a uniformly convergent Fourier series for all AE «:, 

Wl(Z;A) == (TtW)(Z;A) = ~ C~P(A) exp(imaz) , 
m=_oo 
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c~)(,x) = [- a2a 2m2 + iaam(2,x + 1) + ,x(X + 1)] em, 
'" 

W2(Z);: (T2w)(z) = L; c~) exp(imaz). 
m=,.oo 

Let u(x;X) = s~w(z). A short calculation yields 

Further, 

Let 

cf>!j)(T;X) = (1 + T)"1/2 .ro C!j)(r;X) 1/!(rV'1 + T, r) dr (j = 1,2), 

C~) (r;X) = 4c~1) (X) r~·l exp{ima [a log(r) + b ]}, 

C~) (r;,x) = c~)r6~.3 exp{ima[a log(r) + b ]}. 

Then, for all CPE C~(IR4), 

'" 
«Du)K(o ;X), cp) = E", ~~o T~-l.imllcf>~)(T;X)dT, ReX> 0, 

By Definition 1 and the results of (i) it follows that (4) 
exists by analytic continuation for ReX> - 1, X,* imf3, 

(4) 

(5) 

m = integer, whereas (5) exists by analytic continuation 
for ReX> - t, x'* - t + imf3, m = integer. 

By verification one proves that u(x;- i) is a solution 
of (3). Hence we must have 

and consequently 

cf>~)('r;-i)+kcf>:;)(T;-i)=O, T?-O 

for all integers m. Thus for all CPE C;(rn4), 

«Du)K(o ; - i), cp) + (k[uK(" ; - ~)]3, cp) = o. (6) 

(iii) Let oK denote the boundary of K, dS the surface 
measure on oK, and a/an the derivative in the direc
tion of the inward normal of K. Then for Re,x> 1: 

u(x, Xli = 0, ~u (x;X) \ = O. 
aK un aK 

Applying Green's formula we get for ReX> 1 and 
CPE c;(rn4), 

«DuK)(o ; X), cp) 

269 

= (uK(o ; X), 0 cp) 

= ~ u(x;X)(D cp)(x)dx 

= JK (Du)(x; X) cp(x) dx 

+ IaK[CP(X) ~: (x;X)-u(x;,x) ~:(X)]dS 

= ~ (Ou)(x;,x) cp(x) dx = «Ou) K(o ; X), cp). 
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By analytic continuation we obtain with (4) for ReX> - 1, 
X'* imf3, m = integer, 

From this equation and Eq. (6) the assertion follows. 

3. THE NONLINEAR DIRAC EQUATION 
'Y!.o. olj;/ox;.... + /2lj;(1ilj;) = 0 

We conclude with a few remarks on the nonlinear 
Dirac equation 

(summation runs from 1 to 4 over indices occurring 
twice, X4 = it). This equation has been considered by 
Heisenberg (cf. Ref. 7), who studied solutions of the 
type 

(7) 

(8) 

where a is a constant spinor and X and cp are real-valued 
functions. Without going into a detailed investigation of 
causal solutions of (7) we want to show that the singu
larities of (8) fit in our scheme. The following calcula
tions are somewhat simpler and easier to discuss than 
those given in Ref. 7. As in Ref. 7, we start with the 
substitutions 

xes) = IA 1-1!2S -3!4f(z), 

cp(s) = (signA) IA 1-1/2S -1/4 g(z), 

(9) 

(10) 

where z = logs and A is a real constant (depending on a 
and 12) which may be positive or negative. Then (7) 
splits into the following two equations (f' ;:df/dz, 
g'=dg/dz): 

tf+ 2f' + g(f2 +g2) = 0, 

i g- 2g' +f(f2 + g2) = o. 
(11) 

(12) 

From here on our calculations will differ from those 
given in Ref. 7. Let 

f=p coscf>, g=p sincf>, 

where p and cf> are functions of z = logs. Substituting 
these expressions in (11) and (12), then multiplying (11) 
by sincf> (by coscf» and (12) by coscf> (by - sincf», and 
adding the resulting equations we get (' means differen
tiation with respect to z) 

p2=2cf>'-%sin2cf>, 2p'=p(i-3cos2cf». 

Differentiation of the first of these equations and sub
stitution of 2pp' from the second and p2 from the first 
equation yields 

cf>" + cf>' = t(sin2cf> + tsin4cf»;: G(cf». 

It follows by integration that 

cf>'(z) = exp(- z){C + o.f.: exp(t) G[cf>(t)]dt}, 

where C is a constant of integration. Let 

h(s) = 2 exp(- z) .r.: exp(?;) G[cf>(?;)]dt 

-%sin[2cf>(z)] (z=logs). 
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Then 

p(z) = {2cp'(z) - t sin[2cp(z)]}1/2 = s-1/ 2[ C + sh(sll-1!2. 

Since 

I G(cp)I~~(I+t), CPElR, 

we have Ih(s) I ~ 12, s'" 0, and thus 

Ip(z)I~ICs-l+1211/2, s"'O. 

Going back to (9) and (10) we get 

X(s) = IA l-l/2s -5/4[C +sh(s)]1/2 cos[cp(logs)], 

<;o(s) =(sgnA) IA 1-1/2 S-3/ 4[C + sh(s) ]1/2 sin[cp(logs)]. 

Evidently the singularities of X and <;0 fit in our scheme, 
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so it can be expected that the corresponding causal 
solutions of (7) do not contain Ii singularities. 
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Lie theory and the wave equation in space-time. 3. 
Semisubgroup coordinates 
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We classify and study those coordinate systems which permit R separation of variables for the wave 
equation in four-dimensional space-time and such that at least one of the variables corresponds to a one
parameter symmetry group of the wave equation. We discuss over 100 such systems and relate them to 
orbits of triplets of commuting operators in the enveloping algebra of the conformal group SO(4,2). 

1. INTRODUCTION 

This paper is an introduction to the problem of R
separation of variables for the wave equation 

(1.1) 

As is well known,1 the symmetry group of (1. 1) is locally 
isomorphic to the fifteen-parameter group SO(4, 2). In 
this and subsequent papers we will show explicitly that 
every known separable coordinate system for (1. 1) (as 
well as some systems which we derive for the first 
time) corresponds to a three-dimensional commuting 
subspace of the space of second-order elements in the 
enveloping algebra of so(4, 2). [We consider the elements 
of so(4, 2) as first-order differential operators which 
map solutions of (1. 1) into solutions. ] If the commuting 
operators 51, 52, 53 form a basis for such a subspace 
then the associated R-separable solutions \}I of (1. 1) are 
characterized by the eigenvalue equations 5 j \}l== Aj\}l, 

j == 1, 2, 3, where the eigenvalues Aj are the separation 
constants. The group 80(4, 2) acts on the enveloping al
gebra of so(4, 2) via the adjoint representation and de
composes the set of three-dimensional commuting sub
spaces of second-order elements into 80(4, 2)-orbits. 
We regard coordinate systems associated with sub
spaces on the same orbit as equivalent. 

Several earlier papers of the authors and collaborators 
can be considered as preparation for the problem we 
tackle directly here. In particular, the Helmholtz, 2 
Klein-Gordon,3 and Euler-Poisson-Darboux, 4 equa
tions are special cases of (1. 1) as are the eigenvalue 
equations for the Laplace operator on the sphere 53 5 

and the hyperboloids of one and two sheets. 6 The same 
is true for the time-dependent Schrodinger equations 
for the free-particle, free-fall, harmonic oscillator7 

and hydrogen atom. Our procedure will follow closely 
the analogous study of the three-variable wave equation 
in Refs. 3, 8, and 9. The difference consists mainly in 
the greater complexity of the four-variable case (al
though a number of computations turn out to be easier 
in four dimensions than in three). In this paper we pro
ceed as in Ref. 8 and present a group theoretic analysis 
of (1. 1) as well as a rough classification of semisub
group systems for this equation. Our future (much more 
detailed) results will be fitted into the framework es
tablished here. 
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In Sec. 2 we define the symmetry algebra so(4, 2) of 
(1. 1) in two distinct bases and construct a Fourier
transform Hilbert space H as well as a Hilbert space of 
positive energy solutions of this equation. On H, the 
elements of so(4, 2) exponentiate to yield a unitary ir
reducible representation of the covering group SU(2, 2) 
of the identity component in SO(4, 2). In Sec. 3 we de
termine explicitly the action of SU(2, 2). Most of the 
results in this section were obtained in Ref. 10 by an
other method. [However, Eq. (6.6) for the action of a 
lightlike special conformal transformation appears to 
be new.] 

The remainder of the paper is concerned with separa
tion of variables. In analogy with Ref. 8 we say that R
separable coordinates {uJ associated with a three
dimensional commuting subspace of symmetry operators 
are semisubgroup coordinates if the subspace has a basis 
510 52' 53 such that 51 ==A2 where A E so(4, 2) and [A, 5J 
== 0, j = 2,3. A particular A E so(4, 2) may correspond 
to several (or to no) semisubgroup systems. If \}I sat
isfies (1. 1) and the equation A>It = iA\}I, then, since A is 
a symmetry of (1. 1), we can use standard Lie theory 
and introduce new variables Yo, Y1, Y2' Y3 such that 
A == 3

yO 
+ jly)a.nd \}I(y) = r(y) exp(iAYo)cp~(y j), where r is a 

fixed function satisfying 3Yor + jr = O. Then (1. 1) reduces 
to a second-order partial differential equation (t) for 
<P~ in the three variables YJ. The possible semisubgroup 
systems A 2, 52' 53 thus correspond to the possible co
ordinate systems such that the reduced equation (t) 
separates. 

In Secs. 4-8 we examine the possible semisubgroup 
systems for which 52 and 53 belong to the symmetry en
veloping algebra of (t). They are of seven types corre
sponding to seven choices for A. Using the notation in
troduced in Sec. 2, we find the types are: 

1] A == 1'56' In this case (t) is the eigenvalue equation 
for the Laplace operator on the sphere S3' There are 
six coordinate systems. 5 

2] A ==Po and (t) is the Helmholtz equation (5.1) which 
separates in 11 coordinate systems. 2 

3]A=P3 and (t) is the Klein-Gordon equation (5.4) 
which separates in 53 orthogonal coordinate systems. 3 

4]A=D and (t) is the eigenvalue equation (5.8) for 
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the Laplace operator on the hyperboloid which separates 
in 35 coordinate systems. 6 

5] A =Po + PI and (t) is the free particle Schrodinger 
equation (6.1). There are 17 coordinate systems. 7 

6] A = r 43 and (t) is a generalized EPD equation (7.1). 
The number of coordinate systems for this case has not 
yet been determined. 

7]A=rI2+r34-r56 and (t) is (8.3). The number of 
coordinate systems for this case is still unknown. 

Cases 6] and 7] will be discussed in detail in future 
papers. For each case we show how to pass from the 
Fourier-transform Hilbert space H to the space of posi
tive energy solutions of (1. 1). 

Our classification includes all known semisubgroup 
coordinates for (1. 1) with one principal exception. Di
agonalization of the operator A = Po + PI in Case 5] does 
not uniquely determine the variable Yo which is split off 
to obtain the reduced equation (t). Thus (t) is not unique 
in this case. The possibilities for the nonorthogonal 
coordinates which can arise will be classified in a future 
paper. [See Ref. 9 where a similar classification was 
carried out for (Ott - 0xx - Oy)'li = O. ] In all other cases 
there is an identity analogous to (2.24) which uniquely 
determines the reduced equation. The variable Yo is 
still not unique, but new nonorthogonal coordinates so 
obtained are rather trivial modifications of the coordi
nates we have listed. 

Finally, in Sec. 9 we classify the orbits in so(4, 2) 
under the adjoint action of SO(4, 2) to see why not every 
A E: so(4, 2) belongs to a semisubgroup system. 

The next two papers in this series will be devoted to 
an explicit classification of all orthogonal R-separable 
coordinate systems (semisubgroup or not) whose coor
dinate surfaces are families of confocal cyclides. The 
classification will proceed in analogy to that in Ref. 3. 
However, the number of coordinate systems involved is 
approximately 300. Later we will classify the nonortho
gonal systems. Future work will concern the results in 
special function theory which follow from separation of 
variables in (1. 1). Equation (1. 1) is the most important 
equation in special function theory and it is no accident 
that Batemanll 

,12 devoted so much energy to its solution 
by separation of variable methods. 

2. SO(4, 2) AND THE WAVE EQUATION 

The symmetry algebra of the wave equation 

(000 - 011 - 022 - (33)'li(X) = 0, x = (xo, Xl' X2 , x3) 

is the set of all linear differential operators 

3 

L=~ aj(x) OJ +b(x) 
j=O 

(2.1) 

such that L'li is a (local) solution of (1. 1) whenever 'li 
is a (local) solution. 

As is well known, the possible symmetry operators 
L form a 15-dimensional Lie algebra, isomorphic to 
so(4,2), where the commutator is the usual Lie bracket.13 

A convenient basis for this model of so(4, 2) is provided 
by the linear momentum operators 
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POI=i\", 0'=0,1,2,3, (2.2) 

the generators of homogeneous Lorentz transformations 

M21 = X201 - Xl d2, 11113 = Xl °3 - X301' 11-132 = Xa d2 - X20a, 

M01=Xoi\ +X100, M02=X002+X2ilo, Jl.1oa=xoil3+ x300' 

(2.3) 

the generator of dilatations 

D = - (1 + xooo + Xl a1 + X202 + xaoa), (2.4) 

and the generators of special conformal transformations 

Ko= - 2xo + (x· x - 2x~)ao - 2XOx101 - 2x OX202 - 2xox ao3, 

Kl = 2Xl + (x . x + 2xr)i\ + 2xlx 0i3 0 + 2X1X202 + 2X1X3()3' 

K2 = 2X2 + (x. x + 2X~)02 + 2x2x OoO + 2X2X101 + 2X2X303' 

K3 = 2X3 + (x· X + 2X~)o3 + 2x3xljoo + 2X3-""1 °1 + 2X3-''"202' 

where 

X· Y = XoYo - X1Yl - XzY2 - X3Y3 
~, 

=Xoyo-x.y=.0 KOIaX",Ya, 
",a=o 

(2,5) 

(2.6) 

The commutation relations will follow from relations 
(2.22) to be derived later. 

The symmetry operators can be exponentiated to yield 
a local Lie transformation group of symmetries of 
(2.1). 13,14 Indeed, the momentum and Lorentz operators 
generate the Poincare group of symmetries 

-v(x) - 'li(1\ -1(X _ a», a = (a o, ~, a2, a3), 1\ E SO(l, 3), 

(2.7) 
while the dilatation operators generate 

exp(AD)'li(x) = exp(- A)-v(exp(- A)X), A E: R (2.8) 

and the K", generate the special conformal tranformations 

exp(aaKo + alKl + azK2 + a3K3)-v(x) 

-1 ( X + a(x' x) ) 
=[1+2x·a+(a·a)(x.x)] 'li 1+2x'a+(a.a)(x'x) . 

(2.9) 
We shall also consider the inversion operator 

R'li(x) = (x. X)"l-V(_ x/x· x) (2.10) 

which is a symmetry not generated by the local Lie 
symmetries (2.2)-(2.5). 

As is well known from quantum field theory, 1,13 by 
formally taking the Fourier transform in the variables x", 
we can express the positive energy solutions of (2.1) in 
the form 

-V (x) = (27r~3IZ f f 1: exp(ik . x)!(k)dJ.1.(k), 
(2.11) 

Let fI be the Hilbert space of all complex Lebesgue 
measurable functions !(k) such that 

(2.12) 

and with inner product 
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if, g) = J J J Ii dp.(k), I, gEI-i. (2. 13) 

As is well known, 1,13 the functions lJ1, <I> related to I, g, 
respectively, by (2.11) satisfy 

(W, 4» = if, g) =i J J JlJ1(x)i3 04J (x) dXI dXadx3 
"o·t 

(2.14) 
== - i J J J (Oow(x)~(x) dX1 dX2 dx3, 

xo·t 

independent of t. [Note that (2. 14) is easily derived 
from (2. 13) for I, g belonging to the dense subspace 
j) of II consisting of C~ functions with compact support 
bounded away from k= 0, and then considering the clo
sure of fj. For / E I-i the corresponding lJ1 is a solution 
of (2.1) in the sense of distribution theory. ) 

The operators (2.2)-(2.5) acting on solutions of (2.1) 
induce, via (2.11), corresponding operators on Ii, 

Po=iko, Pj=-ikj , j==1,2,3, 

Mal == k2ilkl - kl il k2 , Mia = kl ;\3 - kailkl' 

.!VIa2 = kaOk a - k 3 0ka, MOl = k OOkl' 

M02=kook2' M 03 =koo"'3 

D= 1 +1~10kl +k2ok +k30k , 
2 3 

Ko = iko(O"'I"'1 + 0"'ak2 + 0kak3 ), 

KI = i(kl O"'l k - k1o'_b - kl Ok k I «'a 3 3 

+ 2k2 ok k + 2kao", k + Nk ), 
I 2 I 3 1 

K2 = i(k2ok '" - k 2 o", k - kaG", '" 22 11 33 

+ 2k1o", III + 2kaOk k + 20", ), 
2 2 3 2 

K3 = i(k30", k - k3o. '" - h3 il ", • 33 11 Z2 

+ 2k1 ok "'1 + 2kzo" k + 20", ). 
3 3 2 3 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

In Ref. 13 it is shown that II is invariant under Rand 

RI(k) = 4~ fJJJo«2k .l)1 /2)/(lJdp.(l), (2.19) 

where Jo(z) is a Bessel function. FUrthermore, R a= E 
(the identity operator on f/) and R is a unitary self
adjoint operator on this space. Also we have the 
relations 

RKa R-1 = -Pa, RDR-l == - D, RMaIlR-I = Mall' (2.20) 

Note: There is a minus sign error in the corresponding 
expression in Ref. 8 which propagates through several 
equations. The error is corrected in Ref. 15. 

Now we introduce a new basis for the symmetry alge
bra of (2. 1) which makes apparent the isomorphism with 
so(4,2). We define so(4, 2) as the 15-dimensional Lie 
algebra of 6x6 real matrices JI such that JIG +GA t ==0, 
where 0 is the zero matrix and 

1 0 
1 

G= 1 ==(Gall). 

1 
-1 

0 -1 
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Let C if be the 6 x 6 matrix with a 1 in row i, column j, 
and zeros everywhere else. It is straightforward to 
check that the matrices 

r ab == Cab - C ba = - r ba' 1!S a < b!S 4, 

raA=CaA+CAa=-rAa, 1!Sa!S4, A=5,6, 

r 56 = [ 65 - C 56 = - r 65 

(2.21) 

form a baSis for soC 4, 2) with commutation relations 

[r ail, rr~l ==G8rr a~ + Ga~rBr - G~Br ar 

- G"'rrB~' (2.22) 

This basiS can be related to the operators (2.2)-(2.5) 
as follows: 

P O==rI5 +r56, PI =r12 +T26, P 2==r13 +r36, 

PS=rI4+r46' KO==rlS-r56' Kl==rI2-ra6' 

K 2 =r13 -rS6 ' K 3 ==r14 -r46 , M al =r32 , 
(2.23) 

M13 ==.r 24' M32 = r 43' MOl == r 25, 

M Oa =.f'35' ArI03 =r45 , D=rI6 • 

(That is, the appropriate commutation relations are 
satisfied if these identifications are made.) 

For our models of so(4, 2), [acting on the solution 
space of (2.1) or on the HUbert space II) we have the 
identities 

(i) p~-pf - P~ - p~ =K~ -K~ -K~-K~= 0, 

(ii) fi2 + rf3 + rf4 + r~3 + rE4 + q4 == r~6 + 1, 

(iii) q2 + r~4 + ri3- r~5 - r~s - Tis = - Da + 1, 
(2.24) 

(iv) rf2 + r~6 - rfs - rfs - r~6 - r~5 = n3 + 1. 

If {lJ1a (x)} is an orthonormal (ON) basiS for the Hilbert 
space of positive energy solutions of (2. 1) then (in the 
sense of distributions) 

",,- I Iliff ~lJ1",(x)lJ1a(X ) :=A.(x -x )= (2"IT)3 

x exp[ik . (x - x'») dp.(k), (2.25) 

where the distribution A. is given explictly by16 

1 1 i 
A.(x) == (2"IT)2yCf"2 + 471Y [6 (r + t) - 6 (r - t)], 

(2.26) 

Note that 

lJ1(x) = (lJ1, A. (x' - x», (2.27) 

where the integration is carried out over x'. 

3. THE ACTION OF THE CONFORMAL GROUP 

As is well known, the representation of sot 4, 2) on II 
defined by the operators (2. 15)-(2. 18) can be extended 
to a unitary irreducible representation of the covering 
group SU(2, 2) of the identity component of SO(4, 2).10 
The maximal compact connected subgroup of SU(2, 2) is 
SO(4) XSO(2), where 80(4) is generated by the Lie alge
bra operators r lil 1!Si<j!S4 and SO(2) by r 56 . We will 
explicitly determine the action of this subgroup on fI as 
well as the actions of other interesting subgroups. 
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The operators M"a generate a subgroup of SU(2, 2) 
isomorphic to the homogeneous Lorentz group SO(3, 1). 
The action of this subgroup is determined by 

T(O)f(k) =f(kO) , o ",SO(3), 

exp(aMOl)f(k) = f(k t (a), h2' hal, (3.1) 

let (a) = I<t cosha + l?o sinha, 

where M2t , Mt3, M32 generate SO(3), and the results for 
M 02, M03 follow easily from that for MOt. The Po< gener
ate a translation subgroup of operators 

expeL; a",P", )f(k) = exp(ia . h)f(k). (3.2) 

The unitary operators exp(L;aaKa) are more difficult 
to compute. Since the SO(3, 1) subgroup transforms a 
via the adjoint action, one has to consider only three 
distinct cases: (1) a = (a Q, 0, 0, 0), a o * 0, timelike; (2) 
a-= (O,~, 0, 0), at * 0, spacelike; (3) a= (ab~' 0, 0), 
~ * 0, lightlike. All other cases can be obtained by com
posing these three operators with the operators (3.1), 
(3.2). 

Starting with the time like case, we introduce the basis 
VI.} for ft consisting of generalized eigenvectors of the 

J 
commuting operators P", 

fl. (k) = 6 (1<1 - 11 )6 (k2 - 12 )6 (le3 -13)k 0, - 00 < I j < 00 
J 

PJI j = - ilhflj' It = 1, 2, 3, P Oflj -= ilofl j' 

VI.JI'.) =6(l1 -1~)6(l2 -Z~)6(13-Z~)l0, 
J J 

10= (l~ +l~ + l~)t /2. 

It follows that the functions KI j -= Rfl j' 

K (k) =2J «21< . Z)t /2) 
I j 47T 0 , 

(3.3) 

(3.4) 

form a basis for fI consisting of generalized eigenvec
tors of the commuting operators K", 

KhKlj =ilhKl j , K~~lj = - ilof{zj' 

(glj,gl') =6(11- Z;)6(12 -1~)6(13-1~)l0, 

as follows from the fact that R is unitary. 

N ow we have for f E fI that 

exp(aKo)f(s) = J J J C(a, 1, s)f(1) d/l(1), 

C(a, 1, s) = (exp(aKo)flj'!S) 

(3.5) 

(3.6) 

= (R exp(- aPu)Rfl j,!Sj) = (exp(- aPO)glj' gSj) 

= 1;7T2 f !!exp(- iako)Jo«2k .l)1/2)dj.L(k) 

= 4~ 11a I exp[i(Zo + so)a~t J 

x J o(a-l [2(s 010 + Sill + s212 + s313) Jl /2), 

(3.7) 

To compute the action of exp(aKl ), we choose a basis 
of eigenfunctions of the commuting operators Po, Pi> M32 , 
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hpxm(k) -= (27T)-1 /26 (ko - p)6 (k1 - x) exp(imli), 

O,,;p, -p,,;X";p, m=O,±l, ... , 

d/l(k) = dk o dkl dli, h2 = (h~ - kfjl /2 sinli, 
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(3.8) 

k3 = (k~ - kfj1 /2 cosli. 
Here, 

Poh=iph, Plh=-iAh, M32h=imh, 

(hpxm,hp'x'm') = 6 (p - p')6 (x - X')6 mm" 

It follows that the functions gpxm = Rhp).m, 

) _ exp(imrp) [( ( »1I2J 
gpxm(k - (87T)172 J m rs exp 0' - /3 

XJ",[(rs exp(/3 - 0'»1/2J 

p=rcoshCt, X=rsinhO', 

ko = s cosh/3, kl -= S sinh/3, 

(3.9) 

(3.10) 

d/l(k) =sds d/3dli, S?O, _00</3<00, 

form a basis for ft and satisfy relations 

KofJ= - ipg, Klg= iXg, M3#= img, 

(gp)."" gp').''''') = 6 (p - p')6 (A - A/)6 mn(0 

Now, 

- 7T"; Ii,,; 7T, 

exp(aKl)f(k) = J R(a, 1, k)f(l) dll(l), 

where 

H(a, 1, k) = (exp(aKl)fl,!J 

= L fa ~ t exp(iXa) gpl.m(l)gp).",(k) dAdp 
m=_tO 

xJo(a- l /2 (kol o + kill - k212 - k313)1 12). 

We will compute expa(Ko + Kl ) in Seco 6. 

(3.11) 

(3.12) 

(3.13) 

The dilatation operator generates the symmetries 

exp(aD)f(k) = eaf(eak). (3.14) 

Using these results we can exponentiate the compact 
generator r56-=~(Po-Ko). The operators Po,D,Ko gen
erate a SL(2, R) subgroup of SU(2, 2) and we have 

exp(2lir 56) = exp(tanliPo) exp(- sinli cosliKo) 

x exp( - 21n cos eD) (3.15) 

on SL(2, R). Evaluating the right-hand side of this ex
pression we find 

exp(2lir 56)f(k) 

= _ I cotlil fexp[ _ i(lo + ko)coteJJo(csce[2(kolo + lell l 47T 

+k212+k
3
1

3
)J1/2)f(l)d/l(l), e*n7T. (3.16) 

The operators PI' D, Kl generate another SL(2, R) 
subgroup of SU(2, 2) and there follows the relation 

exp(2er12) = exp(tanliPl ) exp(sine coseKt ) exp(- 21n cose D) 

or 

exp(2lir12) 

= 1. 2e !exP[i(kl + 11) cot8]Jo(cscli[2(leol o + klll 
41Tsm 

- k212 - k313) J1 /2)f(1) d/l(l), e * n7T. (3.17) 
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4. DIAGONALIZATION OF fS6 

The restriction of the unitary irreducible represen
tation T of SU(2, 2) on H, discussed above, to the com
pact subgroup SO(4) decomposes into a direct sum of 
SO(4)-irreducible representation DF , dimDF = (2F + l)z. 
A basis of eigenvectors for the commuting operators 
r 56' r 43' r 12 can be used to exhibit this decomposition, 

r 5e/=iAj, r 4if=im/, r 1J=ip/, 

- ir56=tkO(- A3 + 1), r43=k3ak2 - kZaks' (4.1) 

- ir 12 = ~ (ak1k1 - akzkz - ak3k3 - 1) 
+ kZak k + kg(\ k + ok . 

1 Z 1 3 1 

Setting 

k1 = (~2 - rf) 12, kz = ~1/ sine, 

k3=~1/coSe, dJ1.(k)=2~1/d~d1/de, 

we find that the ON basis consists of eigenfunctions 

_(F-a)!(F-b)! )1/Z [( z+ Z)/]( )a+b 
/Fab(~,1/,e)- 1T(F+b)!(F+a)! exp- ~ 11 2 ~1/ 

xL}a::)( ~z)L}a::)(rf) exp[i(a + b) e], (4.2) 

.:I.=2F+l, m=a+b, p=a-b, 

2F=O, 1, 2,"", a, b=F,F-l, .•. , -F. 

[Here L~'" )(x) is a generalized Laguerre polynomial. ] 

The (2F + I)Z functions /Fab for fixed F form a basis for 
DF , so TISO(4) "'L:;=ottlDF • 

The known recurrence relations for Laguerre poly
nomials imply 

2r 1e/Fab = [(F - a + I)(F + b + 1) ]l/Z/F+1/Z,a_1/Z,b+1/2 - [(F - a)(F + b) ]l/2/F+1/Z ,a+l/z ,b-1/2 

+ [(F + a + I)(F - b + 1) ]1 IZ/F+1 IZ,a+l IZ,b-l Iz - [(F + a)(F - b) ]l/:rF_1I2,a_l/z,b+1/2' 
(4.3) 

2iPifF ,a,b = [(F + a + I)(F + b + 1) ]1 I Z/F +1 IZ,a+l/Z,b+1 12 - [(F - b)(F + b + 1) ]1/:rF ,a,b+l - [(F - a)(F + a + 1) ]l/2/F ,a+l,b 

+ [(F - a)(F - b) ]1/Z/F_1 12,a+l IZ,b+l Iz + [(F + a)(F + b) r 12/F_1 12,a-l 12, b-l 12 - [(F + b)(F - b + 1)]1 12/F ,a,b-l 

- [(F+a)(F- a + 1)]1 12/F,a_l,b +[(F- a + I)(F- b + 1)]1I2/F+l IZ,a-l/Z,b-l Iz' 

Expressions (4.1), (4.3), and the commutation rela
tions (2. 22) suffice to determine the action of any r ",a 

on/Fab' 

There is a close connection between the quantum 
Kepler problem in three-space, 

H<p = E<P, H= - 0% x - ax '2- ax % + elr, 
1 1 Z 3 3 

r-(xZ+x2+xZ)1IZ (Jf. 1<pIZdx dx dx <00 
- 1 Z 3 '. R3 1 Z 3 , 

(4.4) 

and the equation r se/= i.:l./. Indeed the equations can be 
identified if we set kJ=xj../-E, E=_e2/4.:1.z. (Although 
the eigenvalue problems are defined on Hilbert spaces 
with different inner products, it follows from the Virial 
theorem, Ref. 17, p. 51, that if E belongs to the point 
spectrum of H, and <P is the corresponding eigenvector, 
then <P has finite norm in H. Conversely, if / is an eigen· 
vector of r 56 then J J J R31/lz dX1 dxz dX3 < 00 and / corre
sponds to an energy eigenvalue E in the point spectrum 
of H.) Since the eigenvalues of - ir 56 are .:I. = 2F + 1, 
2F = 0, 1, 2 .. " it follows that the point spectrum of H 
consists of the eigenvalues E = - eZ 14(2F + l)z. (Similar
ly, the continuous spectrum of H is related to the opera
tor r 15 .) 

Applying the transformation (2. 11) to the basis {{Fab} 
we can determine the corresponding ON basis {WFab} 
of positive energy solutions of (2.1), 
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xz=rsimp, x3=rcosrp. 

In terms of the coordinates 

Xo 
sinl/! x - Y1 

Yo- cosl/!' l-Yo-cosl/!' 

Xg 
Yg Yo=cosacosa, 

Yo-cosl/!' 

Y2 = sina sinrp, :1'3 = sina cosrp, 

we have 

(4.5) 

r - Y2 
~ 2- Yo- cosl/!' 

Yl = cosa sina, 

(4.6) 

'l'Fab(X) = (cosa cos a - cosl/!) exp[i(mrp + P(J - (2F + 1)'l')] 

X(21T)-1/2(_I)F-a+l (F+a)! (F+b)! )1 12 (sinO!)a+b 
1T(F - a)! (F- b)! 

X (cosa)ZF-a-b (b - F, a - F \ 2 ) 
r(a+b+l) 2Fl a+b+l -tan a . 

Indeed, direct computation shows 

r 56 = - a~ + sinl/!(cosQ cosu - coszprt, r 43 = a ~, 
r 12 = ao + cos a sina(cosa cosa - COSzp)-l 

on the solution space of (2. 1). Hence 

(4.7) 

(4.8) 

'l'Fab(X) = (cosa cosa - coszp) exp{i[mrp + P(J - (2F + 1) zp ]}g( a) 

and substitution into (2.1) yields R-separation of vari
ables. It follows from this that .Ii(a) must be a multiple 
of (sina)a+b(cosa)2F-a-b 2Ft (b - F, a - F; a + b + 1; - tanZa). 
The constant is determined by explicitly computing 
(4.6) for convenient values of the variables. 

There is another model of this irreducible represen
tation which is very convenient for computations involv
ing eigenfunctions of r 56' r 43' and r 12' The representa
tion space J consists of functions h of three complex 
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variables 1(,1', II' such that h(- Ii, - v, - w) = h{u, v, w). 

More precisely, J is the complex Hilbert space with 
ON basis 

[
(F + b)! (F - h) !] 112 

lIFab = (F + o)! (F _ a)! uF + avF + hw 2F - a - b, 

(I, b = F, F - 1, ... , - F, 2F = 0, 1, .... (4.9) 

The operators 

r 56 = i(/lQ" + l'Ou + lI,a w + 1), 

(4.10) 

acting on this basis satisfy relations (4. 1), (4.3) and 
completely determine the action of so(4, 2). The three 
variable model appears to be the simplest in which to 
compute matrix elements of the SU{2, 2) operators with 
respect to the {1'56, r 43 , r 12} eigenbasis. For some ex
amples of matrix elements computed with this model 
see Ref. 18. (Indeed in this reference it is shown that 
one can choose another basis for the complexification 
of so{4, 2) for which the differential operators take a 
much simpler form. The action of the Lie algebra on 
the basis {{Fab} corresponds exactly to the 12 known dif
ferential recurrence relations for the functions 2Fl') 

We can see from (4.6) and (4.8) how one characterizes 
those solutions >¥ of (2. 1) such that r 56>¥ = i'\>¥. It follows 
from these expressions that >¥ = (Yo - cos</! )<l>(y) exp(- i'\ljJ) 

where ~'= (:VI)' _\'1' :V2' ~'3) is an element of the sphere 
S3 : y~ + r[ + r~ + y~ = 1. Moreover, Eq. (2. 1) for >¥ re
duces to the eigenvalue equation 

(4.11) 

Here (4.11) is the eigenvalue equation for the Laplace
Beltrami operator on S3' Indeed, the symmetry algebra 
of this equation is so( 4) with basis {r ij, 1 '" i < j '" 4}. 
The operators 

f'12=Yu0YJ.-Yl0yo, r34=Y2oY3-Y30Y2' 

r 23 = Yl dY2 - _V2 0YJ. 

acting on S3 generate this symmetry algebra. 

(4.12) 

Thus, the effect of diagonalizing r 56 is to reduce the 
separation of variables problem for (2.1) to the corre
sponding problem for (4.11). The latter equation was 
studied in Ref. 5 where it was shown that (4, 11) sepa
rates in exactly six orthogonal coordinate systems, 
each corresponding to a commuting pair of symmetric 
second order symmetry operators from the enveloping 
algebra of so(4). Briefly, the list is 

1] ri3' ri2 (cylindrical) 

2]rr2+rf3+r~3' rrz (spherical) 
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3] f'f2 + rfs + f'~s, ns + 1?2rfs' 0 <!? < 1 (spheroelliptic) 

41 rf2 + rfs +r~3 + a(rr2 -1~i4)' f'r2' - 00 < a <-1 

(elliptic cylindrical, Type I) 

5] Same as 4] with - 1 < a < 0 (elliptic cylindrical, 
Type II) 

(f'2 _ ['2 ) +(b - (1 - 1) 
" 13 24 1 _ (1 _ b 

2 2 (a - b - 1) 2 2 +2h(l-a)(['13-f'24)+2(1(I-b) 1 I (1'lZ-f'S4) 
- a- ) 

(ellipsoidal) . 

The names of the separable coordinates are listed in 
parentheses, These systems are studied in detail in 
Ref. 5 and related to the hydrogen atom eigenvalue 
equation, 

5. DIAGONALIZATION OF Po, P3 I, AND D 

Next we search for coordinate systems permitting 
separation of variables in (2.1) such that the correspond
ing basis functions >¥ are eigenfunctions of P li : Pn>¥ 
= iw>¥. In this case we can set >¥(x) = exp(iwxo) <l> (Xl, '2' '3) 
where 

(5.1) 

It follows that the reduced equation for the eigenfunctions 
is the Helmholtz equation. The symmetry algebra for 
(5.1) is [(3), the Lie algebra of the Euclidean group in 
three-space. A basis forc(3) is {Pl,PZ,P3,AIzl,!'vI13,M3Z}' 
It is well knownZ,19 that this equation separates in ex
actly 11 orthogonal coordinate systems, each system 
corresponding to a pair of commuting second order 
symmetric operators in the enveloping algebra of C (3). 
Briefly, the separable systems are 

11 P~, P~ (cartesian), 

2] AI~l' P~ (cylindrical), 

3] VVI2l , P z}, P; (parabolic cylindrical), 

4] M~l +rf2pi, P~, d~ 0 (elliptic cylindricall, 

5] Al~l + 1VIrs + lH~2' 1H~1 (spherical), 

6] i\!I~1 + ]vIr3 + 1'\1~2 - a2(Pf + P~), !'vl~l' (l> 0 

(prolate spheroidal), 

7]1\!I~1 + Mrs + M~2 + a2 (Pi + P~), M~l' a ~ 0 

(oblate spheroidal), 

8]{NI32,P2t-{11113,Pl}, M~l (parabolic), 

9] M~I - c2p; + c({M1S ' l\} +{MS2 ' P2}) , 

c(P~ - pi) +{lVI13 , PI} -{iH32 , P 2} (paraboloidal), 

10] pi + aP~ + (a + l)P~ + M~l + NIr3 + AJ~z, 

!'vIf 3 + a(M~2 + P~), (l > 1 (e llips oida!) , 

11] M~l + Mi3 + M~z' M~2 + bMf3' 1 ~ b ~ 0 

(conical). Here {A, B} =AB + BA. 
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~ 

On H the condition P of == iwf implies f(k) == 0 (ko - w)g w(k) 
where w > ° and k== (kl' k2' k3) ranges over the unit sphere 
52: k· k== 1, k== wk. To determine the functions gO) one 
uses the Hilbert space L 2(5 2) of square integrable func
tions on 52 [with measure dS1{k) = dkl . dk2/k3J on which 
C (3) acts via 

Pj=-iwkj, Mjl=k/Okl-kIO'kj , 

(5.2) 

These operators determine a unitary irreducible rep
res'intation of E(3) on L 2(52). 20 Once the eigenfunctions 
gas(k) of the operator pairs 1)-11) have been deter
mined, the corresponding separable solutions ljIwas{x) 
of (2.1) can be obtained from the integral transform 

wexp{iwxo) ( . A A A 

ljIwas(X)= (21T)312 ls exp{twx·k)gas{k)dS1{k). 

2 (5.3) 

All the eigenfunctions gas and integrals (5. 3) have been 
computed in Ref. 2. 

Now we study coordinate systems permitting variable 
separation in (2. 1) such that the basis functions ljI are 
eigenfunctions of P 3: P 3lj1 = - iAljI. Here we can set ljI(x) 
=exp(- iAX3)<l>{XO,Xl>X2 ), where 

(5.4) 

The symmetry algebra of the Klein-Gordon equation 
(5.4) is [(2, 1) with basis {po, P l , P 2, M 21 , MOl> M 02}' 
Furthermore, the pseudO-Euclidean (or Poincare) group 
E{2, 1) is the symmetry group of (5. 4). In Ref. 3 it is 
shown in detail that variables separate in (5. 4) for 53 
orthogonal coordinate systems, each system character
ized by a pair of commuting second-order symmetric 
operators in the enveloping algebra of [(2, 1). [Of course 
the coordinates 1J-4J for (5.1) are counted again in the 
list of 53 systems for (5.4).J 

On H the requirement P3f= - iAf implies f(k) =0 (k3 
- >..)g{kl' l?2) where - 00 < >.. < 00. The search for eigenfunc
tions reduces to a study of the Hilbert space L 2{H) of 
square integrable functions with respect to the measure 
dt; = dk1 dk2/k o, where ko = {kf + k~ + A2)1/2. The inner 
product is 

and the action of [(2, 1) on L 2{H) is given by 

Po=iko, P l =-ikl , P 2=-ik2, 

M 21 =k2ok -kl ok' l\1 01 =kook, M02=koOk2' 
1 2 1 

(5.6) 

As is well known, 1,20 these operators define a unitary 
irreducible representation of E{2, 1) on L 2{H). Once the 
eigenfunctions gas corresponding to each of the 53 sepa
rable systems have been determined, the associated 
separable solutions of (2. 1) follow from 

() exp{- iAx3) f~ r~ [. 
ljIxas X = (21T) 3 12 l_~ exp t{koXo - k lx l 

- k 2x 2kas{kl , k2) dt;. (5.7) 

A detailed study of the basis functions gas and the inte
grals (5. 7) has not yet been undertaken. 
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Now we search for separable coordinate systems for 
(2. 1) such that the corresponding basis functions ljI are 
eigenfunctions of D: DljI == - illljl. Then we have ljI(x) 
=piV

-
l <I>(SO,Sl,S2,S3)' wherex",=psa , p""O, S.S=E, 

and E = + 1, - 1, or ° depending on whether x . x > 0, < 0, 
or = 0. From Eq. (2.24ii) we see that the reduced equa
tion for <I> is 

(M~l + Mf3 + M~2 - M81 - M~2 - M83)<I>{S) = (1I2 + 1)<I>{s). 
(5,8) 

The operator D commutes with the subalgebra so{3, 1) 
with basis {M21' M13, M 32 , MOl, M 02 , M 03} and, in fact, 
so{3, 1) is the symmetry algebra of (5, 8). 

As discussed in Ref. 6, (5.8) separates in 34 ortho
gonal coordinate systems for the case E = + 1, each sys
tem characterized by a pair of commuting second-order 
symmetric operators in the enveloping algebra of 
so(3, 1). Some results for the case E = - 1 are also 
presented in Ref. 6. 

On H the requirement !?f= -Jllf implies f(k) = ktV
-
lhv(k), 

- 00 < II < 00, where k= kok and k ranges over the unit 
sphere 53' The eigenfunction problem reduces to a study 
of the Hilbert space L 2(53) on which so{3, 1) acts via 

M21 = k20;'1 - kl o;2' M13 = - k30kl , M32 = k30kZ' 

MOl = - {1 + ill)kl + {1- kfjo; - k1k20k , 
1 2 

M02 = - (1 + ill)k2 - kI k20k + (1 - k22) Ok , 
1 Z 

(5.9) 

M03 = - (1 + i ll )k3 - klk30kl - klk3o;'2' 
A ~ 

where we have chosen kl' k2 as the independent variables. 
These operators determine an irreducible unitary global 
representation of 80{3, 1) which belongs to the prinCipal 
series. Once the eigenfunctions hvas (k) for each of the 
34 separable systems have been determined the corre
sponding separable solutions ljIvc¥a of (2. 1) can be ob
tained from 

piv-l . 
ljIvaa(x) =~r(1- til) 

x 1.£3 exp[± 1T{i + II) /2111 - kl Sl - k2s 2 - k3 s 31 iv-l 

Xh{k) dS1{k), (5.10) 

where the plus sign occurs when 1 - k . s > ° and the mi
nus sign occurs when 1 - it· s < 0. For the case E == + 1, 
xo> 0, these integrals are evaluated in Ref. 6. A num
ber of cases for E = - 1 are also computed. 

6. THE SCHRODINGER EQUATION 

Now we consider the separable coordinate systems 
for (2. 1) such that the basis functions ljI are eigenfunc
tions of Po + P l : (Po + P l )ljI=i{3lj1. Setting ljI{x) =exp{is(3) 
x<I>(t,x2,X3), where 2s=xO+xl , 2l=xl -xO, we find that 
the reduced equation satisfied by <I> is the free particle 
Schrodinger equation 

(i{30t + 022 + (33) <I> (t, X2, X3) = 0, 

which admits as symmetries the operators 

Pl=P2, P2=P3, [=PO+Pl , /C2=P1 -PO, 

K2=-~{Ko+Kl)' !11 =-M32' Bl=~(M02+M21)' 

B2=i(M03-M13)' f) =- (D+M 01 )' 

E.G. Kalnins and W. Miller, Jr. 
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All these operators commute with C = Po + P1 and they 
form a basis for the nine-dimensional symmetry alge
bra ~'2 of (6.1). This algebra is discussed in Refs. 7 
and 21. In Ref. 7 it is shown that (6.1) admits R-separa
ble solutions in 17 (nonorthogonall coordinate systems. 
Each system is characterized by a commuting pair of 
symmetry operators from the enveloping algebra of q 2, 

one operator first-order and one second-order. 

On ff the requirement (Po + P1)f= ij3f implies f(k) 
=u6(u - (3)lIl(V, w), where i3 > 0, u = ko - kl' V = ka, W = k3• 
The search for eigenfunctions ls reduces to a study of 
the Hilbert space L 2(R2

) on which the Schrooinger alge
bra acts via 

Pl=-iv, Pa=-iw, C=ij3, 1<_2=~i(V2+W2), 

- ij3 
I< 2 =-4- (ow + 0ww), IYJ =:: vow - wOv, (6.3) 

Bl =~i3ov, B2=~j3ow' D =- (1 +vov +wow)' 

It is known7
•
22 that these operators induce a unitary 

irreducible representation of the Schrooinger group G2 

on L 2(R2). Once the eigenfunctions lsOl.(v, w) correspond
ing to each separable system have been determined, the 
corresponding separable solutions 'l1IlOlP (x) of (2.1) follow 
from 

_exp(ij3s) (f~ [-it 2 2 
'l1llap(x) - (211)312 J J_~ exp T (v + W ) 

- i(x2v + X3W~lsOlP(V' w) dv dw. (6.4) 

Using the u, v, w coordinates we can now compute the 
operator exp[a(Ko + K1)] in H. Indeed the well-known 
expression 

exp[it(oxx + Oy,) Jt(x, y) 

= L i. m. 4!t II: exp \ - 4!t [(x - Sl)2 

+ (y - S2)21}f(Sl, S2) dS1 ds 2, (6.5) 

for time translation of solutions of the free-particle 
Schrooinger equation, e, g., 7 together with expressions 
(6.2) and (6.3) for 1<-2 leads to 

7. THE GENERALIZED EPD EQUATION 

We next look for solutions 'l1 of (2.1) such that r 43 'l1 
=im'l1. Then 'l1(x)=exp(imcp)eI>(x O,x1,r) where 

x3=rcoscp, x 2 =rsincp 

and eI> satisfies the reduced equation 

(7.1) 

If <p is independent of Xl then (7.1) reduces to the Euler
Poisson-Darboux (EPD) equation, Expression (7.1) can 
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be written in the operator form (2. 24iv), 

(Tt2 + r~6 - ri5 - Tfs - r~6 - T~5)eI> = (T~3 + 1)eI> = (1 - m 2 )eI>. 
(7.2) 

The symmetry algebra of (7. 1) is so(2, 2) with basis 
{r 12, r 56' T 15, r 16, r 26' T 25} or alternate basis {po, K o, P 1 , 

K 1, D, MOl}' Separable coordinate systems for this in
teresting equation will be classified in a later publication. 

On H the requirement r 4J = imf implies f(k) = exp(im e) 
Xj(l, k) where m = 0, ± 1, ± 2,"·, Z ~ 0, k3 =1 costi, k2 
= Z sine, k1 = k. The eigenfunction problem reduces to a 
study of the Hilbert space L 2 of functions j(Z, k) Lebesgue 
square integrable with respect to the measure dp(Z, k) 
= lW + k2)-1 IZdl dk. The inner product is 

The symmetry algebra so(2, 2) acts on L 2 via 

_ ik ( -1 2 -2 ) 'z r 12 -2" 0kk-on-1 o,+m 1 -1 +1 o,k-Ok, 

r16=1+1o,+kok, 

'k r 26 = t2 (- 0kk + Oil + l-l o, - m 21-2 
- 1) - ilO ,k - io k , 

r 25 = (k2 + l2)1 12 ok . 

(7.3) 

A third basis of so(2, 2) for which the structure of the 
Lie algebra becomes more transparent is 

A1 =TS6 +r12, A2=Ts2 +T16, A3=T26 +r1S, 

B1=TS6-r12' B2=rS2-T16' B3=T26-r1S, 

which commutation relations 

[At> A21 = - 2A3, [A2, A31 = 2A1, [At> A31 = 2A2, 

[Bt> B21= - 2B3, [B2' B31= 2B1, [B1, B3l= 2B2, 

[A;, Bj]=O. 

With respect to this basis the isomorphism so(2, 2) 

(7,4) 

(7.5) 

:::; sl(2) x sl(2) is obvious. Moreover, it follows from (4.1) 
and (4.2) that in the eigenspace ff m of H corresponding 
to the eigenvalue m of - iT 43 there is an ON basis {ras} 
such that 

a, i3 = 0, 1,2, .... 

AISoAf-A~-A~=Bf-B~-B~=1-m2 onH m • It follows 
that this action of sl(2) x sl(2) on H m is irreducible and 
extends to a unitary irreducible representation D"(I ml-ll 12 

1)9 D"(lml_1) /2 of SL(2, R) XSL(2, R) on H m' Here D;; is a 
representation of S L(2, R) belonging to the negative dis
crete series. 

Once the eigenbasis k~"} in H m corresponding to a 
separable system for (7. 1) has been constructed, the as
sociated separable solutions of (7.1) can be obtained 
from the transform 
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'11 (X)=exP[im(cp-1T/2)ll°01dlJ (Ir)jOOdk 
mt~ (21T)172 0 m _00 

. exp[i(xo(k2 + 12)1/2 _ x1k) V(l, k)/(k2 + 12)112. 

(7.6) 

8. DIAGONALIZATION OF r 12 + r34 -rS6 

Finally we study the separable solutions of (2.1) for 
which the basis functions '11 are eigenfunctions of L 
= r 12 + r 34 - r 56: L'II = - i(2K + 1)'11. By a tedious compu
tation one can verify that (2. 1) is equivalent to the 
equation 

(tA~ +Af +A~ +A~- Bf- B~- cf- C~)'II= (tL2 +3)'11, 

(8.1) 
where 

Ao=T34+r12+2r56' A 1=r13 +r24 , A2=r12-r34' 

A 3=r14 -r23 , B1=T25-r15' B2=r45-T36' (8.2) 

C1=T15+r26' c2=r35+r46· 

Thus, the reduced equation is 

(tA~ +Af +A~ + A~ - Bf - B~ - Cf - C~)'II=(- J..L2/3 + 3)'11, 

J..L = 2K + 10 (8. 3) 

The operators (8.2) satisfy the commutation relations 
for su(2, 1) and the expression on the left-hand side of 
(8.3) is the Casimir operator for su(2, 1). 

The usual model for su(2, 1) is the space of 3 x 3 com
plex matrices A such that 

iPg2,1 +g2,1A = 0, 
where23 

g2,1 =[1 1 0 ] 
o -1 

This real Lie algebra is eight-dimensional with basis 

Ao=r~ ~ ~ ], A1=[-~ ~ ~l, A2=[~ ~i ~oJ, 
L~ 0 - 2i 0 0 ~J 0 0 

~ i o~ [00 
A3= i 00, B1= 0 0 

o 0 0 1 0 
~l (8.4) 

I 

[
0 0 i J [0 0 OJ C1 = 0 0 0 , C2 = 0 0 i , 
-i 0 0 0 -i 0 

and the basis elements satisfy the same commutation 
relations as the corresponding operators (8.2). The 
symmetry algebra of Eq. (8.3) is also su(2, 1). 

It follows from (4.1) and (4.2) that the possible values 
of K are 0, 1, 2, ... and for fixed K, the solution space of 
(8.3) has an ON basis {'II/,s: 1=0, 1, 2, ... , S = 0,1, ... , 
K + I} such that 

L'IIls= - i(2K + 1)'11/., Ao'llls= i(K + 31 + 2)'111., 

(8.5) 

The solution space of (8.3) transforms irreducibly under 
this action of su(2, 1) and the Lie algebra representation 
lifts to a global unitary irreducible representation of 
SU(2, 1), see Ref. 24. 

The problem of separation of variables for (8.3) is 
far from settled. The variables in (8.3) are intertwined 
in an extremely complicated manner and the standard 
techniques for separating variables in the wave equa
tion, e. g., Ref. 25, yield no nontrivial separable sys
tems for this case. However, it follows from standard 
Lie theory, Ref. 26, p. 49, that every pair of commut
ing operators in su(2, 1) leads to a separable coordinate 
system. It is not yet known whether there exist separa
ble systems corresponding to second-order operators 
in the enveloping algebra of su(2, 1). 

9. CONCLUDING REMARKS 

For completeness we classify the orbits in so(4, 2) 
under the adjoint action of 80(4,2). This classification 
has been given by Zassenhaus27 and later by many others 
but we present the results here in an explicit form adapt
ed to our notation. (This orbit analysis is useful because 
we know that coordinate systems whose defining opera
tors can be mapped into one another under an action of 
the adjoint group are equivalent.) We list the possible 
eigenvalues of a 6 x 6 matrix A E: so( 4, 2) such that f' 
= TAT-1 for some T E: 80(4,2), i. e., we list an element 
on each 80(4, 2) orbit. It is easy to show that if "II. '" 0 is 
an eigenvalue then so are - "II. and x. We use the notation 
"II.(n) , n = 2, ... ,5, to signify that "II. corresponds to a 
generalized eigenvector x of rank n, i. e., n is the small
est integer m such that (A - "ll.E)mx = 0 where E is the 
6 x 6 identity matrix. 

Possible eigenvalues Canonical form r 
1. ± a± ifj, ± ir, 

a, (3 '" 0 

2. ± ia, ± fj, ± Y, 

fj2 + y2 > 0 

3. ± ia, ± i{3, ± iy, 

a,fj,y",O 

3a. ±ia, ±i{3, 0, 0, 

a, {3 '" 0 

3b. ±ia, 0, 0, 0, 0 

yr 12 + (3(r 34 + f' 65) + a(r 35 + r 46) 

ar 12 + fjr 35 + yr 46 

ar12 or ar56 
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4. 0!(2), 

O!*O 

5. iO!(3), 

6. i 0!(2), 

7. ± O!, 

0' *0 

8. ± iO!, 

9. 0(5), 

- 0!(2), 

-iO!(3) 

- iO!(2), 

0(3), 0, 

0(3), ° 
° 

± ii3, 

±ii3 

0!(r12 +r34 +r65) +t(rI3 +r24 +r15 +r26) 

O!(r 34 + r 65) + i3r 12 + t (r 34 + r 56 + r 36 + r 54) 

1 
O!r 46 + {2 (r 21 + r 25) 

1 1 
O!r 12 + {2 (r 35 + r 65) or O!r 12 + ,f2 (r 43 + r 45) 

t(r 43 + r 36 + r 45 + r 56) + _1_ (r 24 + r 26) 
.f2 

From these results we can see why many operators r E so(4, 2) do not directly correspond to a semisubgroup 
coordinate system. For example, it is easy to check that an element of so(4, 2) which commutes with r (case 1], 
O!, 13, Y * 0) also commutes with each of the (commuting) operators r 12, r 34 + r 65' and r 35 + r 46' The coordinate sys
tem associated with these operators is equivalent to a separable system for Eq. (7. 1). By interpreting the remain
ing cases in a similar fashion one can show that each case is in fact associated with at least one semisubgroup co
ordinate system. 
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Conservative neutron transport theory* 
R. L. Bowden, W. L. Cameron,t and P. F. Zweifel 
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\Received 30 August 1976) 

A functional analytic development of the Case full-range and half-range expansions for the neutron 
transport equation for a conservative medium is presented. A technique suggested by Larsen is used to 
overcome the difficulties presented by the noninvertibility of the transport operator K -1 on its range. The 
method applied has considerable advantages over other approaches and is applicable to a class of abstract 

integro--differential equations. 

I. INTRODUCTION 

The neutron transport equation for a "conservative" 
hali-space (c = 1 in one-speed theory) presents special 
complications for essentially technical reasons. The 
orthodox Case approach to the one-speed situation was 
originally worked out by Shure and Natelson, t while 
Greenberg and Zweifel2 used the Larsen-Habetler 
resolvent integration technique3 to treat the same equa
tion. We restrict our attention in this paper to the 
resolvent integration method and point out that the 
special difficulties encountered for c = 1 (cf. Ref. 2 
for a detailed discussion) occur because the transport 
operator K-t is not invertible on its range for that 
situation. The standard technique, originally introduced 
by Lekkerkerker4 is to restrict K-t to a suitable sub
space of its domain on which it is invertible, deal with 
the restricted operator of the standard Larsen
Habetler scheme, and eventUally extend the result to 
the full domain. While this technique in fact works, it 
is somewhat cumbersome and introduces notational 
complexities, especially in the conservative multigroup 
case5 which is, of course, a generalization of the one
speed situation and has been treated by the same tech
nique. (We should point out that the solutions to the 
conservative transport equation are of considerable 
physical importance, especially in obtaining asymptotic 
solutions to ordinary transport equations in the bound
ary layer. 6.1) 

Recently, we have been studying some problems in 
plasma oscillations and rarefied gas dynamics where the 
ordinary Larsen-Habetler technique is not directly ap
plicable because the operator corresponding to K 
= (K-t)-t of the neutron transport equation is unbounded. 
(In the neutron case for c = 1 the operator K-1 is un
bounded but K is bounded. In the plasma and gas case 
both operators are unbounded. ) It is in fact possible to 
integrate the resolvent about an unbounded spectrum, 
as has been done by Bareiss, 8 but the technique involves 
approximating the transport operator by a sequence of 
bounded operators and is somewhat cumbersome. 
Larsen suggested another approach, namely to define 
an operator S = (K - zJ)-l, where z is some complex 
number not in the spectrum of K.9 Then S is a bounded, 
invertible operator, and the whole machinery of the 
resolvent integration technique can be applied to S. This 
technique has proved extremely fruitful in treating the 
plasma and gas problems and has, in fact been general
ized to treat a class of abstract integro-differential 
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equations. 10 In the process of writing out these cases, 
we suddenly realized that the same technique could be 
applied to the conservative neutron transport case, with 
considerable simplification over the treatments of Refs. 
2 and 5. We present the analysis in this paper omitting 
many of the calculational details because they have al
ready appeared in the above cited referenceso In Sec. 
II we treat the one-speed case and Sec. III the multi
group equations. 

II. THE CASE EIGENFUNCTION EXPANSION FOR 
A CONSERVATIVE MEDIUM 

We follow the notation of Refs. 2 and 3 to write the 
transport equation for c = 1 in the form 

olj! (x Il) + K-11j!(x Il) = q(x, IJ.) Il"* 0, 
ax ' 'IJ.' 

(la) 

with 

(lb) 

We note that K-1 is not invertible on its range. In 
fact, the vectors eo(ll) = 1 and el (Il) = Il, - 1 < Il < 1, 
span the A = ° root linear manifold of K-1

o 2 Further
more, as is well known, the spectrum of K-t is con
fined to the real line. Thus, the operator 5 = (K- l 

_ m- l 

is a bounded invertible operator. We easily compute 

(Sl/!)(Il) = ~ 1j!(1l) + (1- i~)-t /+1 slj!(s).ds • (2) 
1 - zil 2A(t) 1 - zs 

-t 

As in ReL 2, we work in the space Xp = {r I IlIE Lp(- 1, 1)} 
but restrict 5 to the space Hp = {rE Xp I I is of class H*}; 
the final results can then be extended to Xp by continu
ity. Here A(z) is the usual dispersion function for c = 1: 

/

+t 
A(z)=l- ~ ~. 

2 z - S 
-1 

(3) 

We now proceed to deal with S by the technique of 
Ref. 3, i. e., we compute the resolvent and by contour 
integration of the resolvent about the spectrum of S 
we obtain the desired Case eigenfunction expansion. 
The resolvent is seen to be 

(zI - S)-11j!(1l) = ~~i7:;~-~ { (1- ill) 1j!(1l) 

+ (1 +iz)-t /<1 slj!(s)ds } 
2A(t-1(z) t-1(z)-s' (4a) 

-1 
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with 

t(z) =z/(1 - iz) (4b) 

and 

(4c) 

so that 

rl (z) = z/ (1 + iz) (4d) 

The spectrum of 5 can be computed by studying the 
analytic structure of the resolvent or one can use the 
spectral mapping theorem to transform the spectrum 
of K-l. In either case one finds 

a(s) =pa(s) U Ca(S), 

with 

Pa(S) ={i} 

and 

(5a) 

(5b) 

(5c) 

Ca(S) is, of course, a semicircle. Furthermore, the 
point i is an eigenvalue of multiplicity 2. 

We now utilize the identity 

~ !(ZI-S)-ldZ=I 
2m ' 

c 
(5d) 

where the contour C surrounds the spectrum of S. As 
usual C is "squeezed" down into a contour r surround
ing Ca(S) and a contour r i surrounding the eigenvalue i. 
We compute the two contributions to (5d) separately. 
First consider 

1 
21Ti 

! (zI - S)-lzp(ll) dz 

r 

1 
21Ti f _1_ (ZP(Il) + A-

1
(z') J+l szp(s) dS) dz'. 

z' - Il , 2 z' - S 
~ ~ 

(6) 

Here r' is any contour surrounding the cut [-1,1]. 
Equation (6) was obtained simply by integrating (4a) 
around the semicircle ca(S) and introducing the change 
of variable z' = t -1 (z) = z / (1 + iz). This is precisely the 
result of ReL 2 for the branch cut integration, Thus 
we are led directly to the standard formula2• 3 

2!i !(ZI-S)-lzp(ll)dZ= /1 A(v)¢v(ll)dv, (7a) 
r -1 

with 

and 

1 
A(v) = N(v) 

As usual we denote 

A±(v) = lim A(v± iE), - 1 < v < 1. 
E - 0 

(7b) 

(7c) 

(7d) 

The integration around r i of (4a) involves the evalua-
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tion of a residue at a second order pole [since A(t"l(i}) 
=:: i\'(rl(i)) =:: 0]0 USing the standard residue formula 

_1_ f p(z) dz 
21Ti q(z) 

= 3[q';(zo)]2 [3P'(zo) qll(ZO) - p(zo) q"'(zo)], 

if q(zo) =q'(zo) = 0, and identifying 

P(z)=i[z(1-iP.)-Il]-1 f+1 sljJ(s)ds 
z(l-is)-s 

-1 

and 

one easily finds 

2!i f (zI - 5)-1 zp(p.) dz 
rl 

~ 3
2 

[II f+l f+l ] = -... sz/!(s) ds + S2 zp (S) ds • 

-1 -1 

(Ba) 

(Bb) 

(Bc) 

(9) 

If one now combines Eqso (6) and (9), one obtains Eq. 
(10) of Ref. 2, i. e., the Case full-range expansion 
formula for c = 1, 

ZP(Il) =~ao - ~alll + .G1 
A(v) ¢v(ll)dv, (10) 

where the expansion coefficients at are defined by 

ai =3 J.;1 (-Il)2-1 z/!(Il)dll. (11) 

We now sketch the procedure that can be used to ob
tain the Case half-range expansion. As usual, we define 
an operator E: X; - X p , where X; is the space of func
tions f: (0, 1] - a; with 

Ilfllp.=[!ol luf(u)IPdu]I/P<oO, 

and we require 

(i) (Ezp)(Il)=ZP(Il), Il/O, 

(ii) (zI - 5)-1 Ezp is analytic for Rez < 0, 

(iii) (zI - 5)-1 Ez/! has at worst a simple pole at z = i. 

(12) 

Condition (ii) will guarantee that in the integral of 
(zI - S)-lEzp around a contour containing the spectrum of 
5 there will be no contribution from the portion of 
ca(s) with Rez < O. Because the transformation 5 - K-1 

maps ca(s), Rez < 0 into [-1,0), this assures that no 
negative Case continuum modes will occur in the full 
range expansion of Ezp, i. e., the half-range expansion 
of ZPE X;. Condition (iii) guarantees that the discrete 
coefficient a1 does not enter into the half-range expan
sion of zp. These conditions could be used to derive the 
operator E, but the result would be the same as that 
used in Ref. 2. Therefore, we shall only verify that the 
operator E as given in Ref. 2, 

\ 

_1_ ~ /1 sf(s)ds Il < 0 
Ef(ll) = X(Il) 2 0 X(- s)(s - Il) , , 

f(Il), 1l>0, 

(13) 

has the correct properties. Here X(z) provides the 
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Wiener-Hopf factorization of A(Z)2: 

X(z)X(- z) = 3A(z), 

where X(z) is analytic in a: \ [0, 1] and vanishes as 1/ z 
as Iz 1- 00 • 

When we substitute Eq. (13) into Eq. (4a), we find 
after simplification that (zI - S)-l ElJ; satisfies 

[(zI - S)-1 ElJ;](Il) 

= [z(l- ill) - 1l]-1 (1- ill) lJ;(Il) + ~ X(t\z» 

x /1 slJ;(s) ds } 
o X(-s)[z(l-is)-s] ,1l>0 

(14a) 

[(zI - S)-l ElJ; ](Il) 

3 { f 1 slJ;(s) [ 1 - ill 
= 2[z(1 - ill) - Il] 0 X(- s) X(Il)(S - Il) 

+ 1 
X(t"I(z»[z(l - is) -S] dS}, 1l<0. (14b) 

Equation (14) can be used to quickly verify that 
(zI - S)-lElJ; satisfies properties (ii) and (iii). To see 
this, note that r( maps the left half complex plane into 
itself and is analytic except for a simple pole at z = i. 
Thus X(r 1(z» is analytic for Rez <0. Moreover, for 
Il > 0 and Rez < 0, z(l - ill) -Il does not vanish. There
fore, from Eq. (14a) we have that (zI-S)-1ElJ;(sJ.) is anal
lytic in z for Rez < 0 and Jl > O. To see that (zI - S)-1 ElJ; 
is analytic for Rez < 0 when Il < 0, we need only check 
that z = Il / (1 - ill) is not a singularity of (zI - S)-1 ElJ;. 
This is done by recalling from Eq. (4d) that r1(;J./ 
(1 - ill» = Il. Thus (zI - S)-1 ElJ; is analytic for Rez < O. 
At z = i, we note from Eq. (14) that (zI - S)-1 ElJ; has a 
simple pole induced by the zero of X(r1 (z». 

Integrating (zI - S)-lElJ;(Il) on z along a contour contain
ing the point i and the semicircle {z Iz = t(i + elB

), 

- 11/2 < e < O} yields the Case half-range eigenfunction 
expansion. 

III. CONSERVATIVE MUL TIGROUP TRANSPORT 

We now derive the result of Ref. 5 in the same simple 
manner used in Sec. II. We define 

(K-1lJ;)(X, Il) 

=(l/Il)[ZlJ;(x,Il)-C 1.;llJ;(x,s)ds], 11-'''0. (15) 

Here lJ; is an N-component vector where the ith com
ponent represents the neutron angular densities in the 
ith group, Z is the diagonal cross-section matrix, and 
C the group-group transfer matrix. The appropriate 
space to seek a solution is, as in Ref. 5, the space 

As in the one-speed case, the computations are done in 
a dense subspace of Holder continuous functions, and 
can be extended to Xpn by continuity. 11 

We have the dispersion function 

A(z) = (Z - 2C)C-1Z - 1.;1 IlD(z, Il)dll, (16a) 
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where 

(16b) 

As in Ref. 5, we consider the conservative case for 
which det(Z - 2c) = O. In this case K-l given by Eq. (14) 
is not invertible on its range. Thus defining S as before, 
i. e., S = (K-l - m-1, we find 

Srj(Il) = B(Il) W7J(Il) + Z[C-l - J..;1 B(s) ds]-l 1.;1 sB(s)7J(s) ds}, 

(17a) 

where 

B (Il) = (z - iIlI)-l. (17b) 

We have assumed z =i is in the resolvent set of K-1. If 
not, any other point could be chosen assuming the spec
trum of K does not consist of the entire complex plane. 
Furthermore, we have assumed that detA(z) vanishes 
as 1/z2 as Iz 1- 00 • 

It is convenient to define 

F(z, Il) = (zI -IlB(Il»-l. (18) 

Then a direct computation gives 

(zI - S)-llJ;(Il) =F(z, Il) {lJ;(Il) + B(Il)W1(z) 

x[C-1_ J..;1 B(s)ds]-ll;l tB(t)F(z,t)lJ;(t)dt}. 

(19a) 

Here we have defined 

R(z)=I-[C-1- 1.;lB (s)ds]-l J..;l tB2 (t)F(z,t)dt. (19b) 

R is actually related to the dispersion matrix A(z), 
Eq. (16a), by 

R(z)=[c-1-1;1 B(s) ds]-lZ-lA(t-1(z»Z-l. (20) 

Since detA(z) has a double zero at infinity, it follows 
that detR(z) will have a double zero at t(oo) = i. The con
tinuous spectrum of K transforms into the semicircle 
given by Eq. (5c) and the additional eigenvalues of K 
[zeros of A(z)] transform by III - t(1I1). 

The eigenfunction expansion is again obtained by in
tegrating the resolvent around the spectrum. The in
tegration around the continuous spectrum can be trans
formed into the identical form found in Ref. 5 (or see 
the result for the subcritical situation which is also 
identical)12 by the change of variable z' = t-1(z). Simi
larly the integrals about the isolated point eigenvalues 
III can, by the same change of variables, be transformed 
into the expansions met in Refs. 13 and 5. Only the con
tribution from the double pole at + i remains to be eval
ulated. Again the appropriate residue for a second 
order pole must must be used. 

We proceed to evaluate (1/21Ti) fr i (zI - S)-llJ;(Il) dz = 11" 
We have from Eqs. (19a) and (20) 

xZ 1;1 sB(s)F(z, s) lJ;(S)dS) dz. (21) 
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From the diagonal expansion of the detA(z), 14 we find 

(22) 

where Ac(z) is the cofactor matrix of A(z). Note by 
definition of the critical multigroup problem, the first 
term of the rhs of Eq. (22) vanishes. The second term 
gives the residue which we need. The result is 

11 = M TrZ-1 Ac(oo)]-1 {IlZ-1 Ac(oo) !;1 slJl(s) ds 

+ Ac(oo)Z-l 1;1 s21J1(s}ds}. (23) 

For use in solving transport problems, it is conven
ient, if not essential, to recast this result as expansion 
coefficients multiplying eigenvectors of K (or K-1). 

This, in fact, is the form in which the result was ex
pressed in Ref. 5. This is accomplished by represent
ing Ac(oo) as (details found in Ref. 15) 

Ac(oo)=-§-Tr[Z- l Ac(OO)] Z~0 L (24a) 

where ~ and I; are certain null vectors introduced by 
Ref. 5, 

A(oo)1; = ° (24b) 

and 

(24c) 

The normalization ~ T~ =1 has been imposed. Using this 
representation, we obtain finally the eigenfunction ex
pansion of Ref. 5, which is 

2n 1+1 [ A] 
1JI(1l) = f;f IJIV

i 
+ IJIr + -1 dll1l2 1JI(1l), I; I; 

+ ( 1;1 dllll[IJI(Il), z~]) IlZ-11;. (25) 

The first term on the rhs is surely the contribution from 
the finite eigenvalues of K. ThiS, along with 1JI1 , is iden
tical with the subcritical result obtained in Ref. 12. 
Only the contribution from the eigenvalue at infinity is 
essentially different in the critical case. 

For the half-space expansion, again an "albedo 
operator" E must be introduced. This operator has 
precisely the same properties as in the one-speed case, 
Sec. II. The appropriate E is 

(EIjJ)j(O'jll) 

j
-[X-1(1l) fo1 s(1l - s)-ly-1(_ s)Z2IJ1c(s)ds]j, 

= -l':;O'jll':;O, 

IJIj (O'ill), j.J.>O, (26) 

where X and Y provide the Wiener-Hopf factorization 
of A, as in Ref. 5: 

Y(-z)X(z)=A(z). (27) 

We now compute 

(1/21Ti) f (zI - st1 EIjJ(Il) dz (28) 

about the spectrum of 5 and thereby obtain the half-
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range expansion formula, 

(29) 

where IJIr j and IJIr are defined in Ref. 12. 

IV. CONCLUSION 

We feel that the results of Refs. 2 and 5 have been 
obtained obtained in the present paper in a much simpler 
and thereby more elegant fashion. In particular we have 
avoided the introduction of subspaces Yp and restrictions 
of operators, etc. However, we point out that the meth
od described here is quite general and will permit us to 
study large classes of unbounded and/or noninvertible 
operators. The problems posed by critical neutron 
transport is that the point spectrum extends to infinity. 
The "Larsen transform" utilized here reduces both 
classes of problems to tractable form. 
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Prolongation structures and nonlinear evolution equations in 
two spatial dimensions. II. A generalized nonlinear 
Schrodinger equation 

H. C. Morris 

School of Mathematics. Trinity College. Dublin. Ireland 
(Received 26 February 1976) 

The prolongation structure approach of Wahlquist and Estabrook is used to determine an inverse scattering 
formulation for a generalization of the nonlinear Schrodinger equation to two spatial dimensions. 

1. INTRODUCTION 

In earlier work l we have shown how to generalize a 
prolongation structure2 for an evolution equation in one 
spatial dimension to one for a generalized equation in 
two spatial dimensions. The equations 

-i-A= -2 +-2 A-2A(<f>-,y) , a ~(0
2 (2) ] 

at iJx ay 
(1.1) 

---<f>=-- -+- (AA*) (2 2) 1(2 2) 
ay ax 2 iJx iJy , 

(1. 2) 

- +- ,y=- - -- (AA*) ( 0 0) 1(0 il) 
oy ax 2 oy Clx ' 

(1.3) 

represent a generalization of the nonlinear Schrodinger 
equation 

. 0 A a
2
A 2 1 12 1- =---2+AA at oX (1.4) 

to several spatial dimensions. 

We will determine an inverse scattering problem for 
Eqs. (1.1)-(1, 3) by adopting the following strategy. We 
will first develop, in Sec. 2, a previously unknown pro
longation structure for the two-dimensional system 

( 
22 ( 2

) 
ax2 +a-vz A = 2A(<f> - IJI), (1.5) 

--- <f>=-- -+- (AA*) ( 
(J a) 1 ( 0 o~ 

ily ax 2 ax oy , 
(1.6) 

( a a~ 1(0 0) -+-IJI=---- (AA*). ay ax 2 ay ax (1.7) 

The general procedure previously developed l will then 
be used to extend that prolongation structure into one 
for the system (1.1)-(1. 3). The Eqs. (1. 5)-(1. 7) are 
an example of a general class of equations which will 
be determined and developed in detail in the next of this 
series of papers. The method used is independent of 
that used by Ablowitz and Haberman3 to determine 
Eqs. (1.1)-(1.3). 

2. A PROLONGATION STRUCTURE FOR THE TWO
DIMENSIONAL SYSTEM 

To determine a prolongation structure for the 
equations 

( il2 a2 ) ax? + ay2 A = +2A(<f> - IJI), 

--- 1>=-- -+- (AA*) ( 0 il) l(a a) 
ay ax 2 ax oy , 

(2.1) 

(2.2) 
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(~ + ~),y=..!.(~ -3....)(AA*) 
ay ax 2 iJy ax ' 

(2.3) 

we must first settle on an appropriate closed set of 
2-forms. It proves convenient to introduce the variables 
Rand L defined by 

R =.!...(~ +~)A (2.4) 2 ax ay , 

L =..!.(~ -~)A (2.5) 
2 iJy ax ' 

in which case Eqs. (2.1)-(2.3) are expressed in the 
form 

(~ __ 0_) <f> = _ (RA * + AR *), 
oy ax 

(...z... + ~)IJI = (LA* +AL*) ay ax ' 

L y = -R, +A(<f> -IJI), 

(2.6) 

(2.7) 

(2.8) 

R:=L~ +A*(<f> -IJI), (2.9) 

where (2.9) is equivalent to the conjugate of (2.1). 

These equations together with Eqs. (2.4) and (2.5), 
which define Rand L, have an equivalent expression in 
terms of the closed ideal of eight 2 -forms, (]II' (]I 2 , ()It, 
(]It, (]I 3 , (]I 4 , I1's' (]I6' defined by 

(]II=dAAdy-(R-L)dxAdy, (2,10) 

Cl3 =d<f> A (dx +dy) - (RA * +AR*)dx Ady, 

!l'4=dIJlA (dx-dy) +(LA* +AL*)dx A dl', 

as = dLA dx -dR ,\ dy +A(<f> - IJI) dxA dy, 

a6 = dR* A dx +dL* A dy +A *(<f> -,y) dxA dy. 

Seeking a prolongation structure, 

n=d1;; +F(A,A*, R,R*,L, L*,<f>,IJI, ?;)dx 

+G(A, A*, R,R*,L,L*,<f>, 1JI,1;;)dy, 

(2.11) 

(2.12) 

(2. 14) 

(2, 15) 

(2.16) 

in the usual way, we discover that we can choose F and 
G to have the forms 

F = Xl + x 2 A + X3A * + LX4 + R*xs +4>X6 +,yx7 , (2.17) 

G = xa + xgA + xlOA * + L*xs - RX4 +<f>x6 - IJIx7 , (2.18) 

and that they must satisfy the Lie bracket constraint 
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[F,C] 

=(R -L)CA -(R +L)FA +(R* -L*)CA* -(R* +L*)F A* 

-(LA* +LA*)F-v +(RA* +AR*)F~ -A*(<f> -IJI)FR * 

-A(<f> -IJI)FL , (2.19) 

where we have used the notation Hp = ';JH/ap for partial 
derivatives. Substitution of (2.17) and (2.18) into this 
relationship produces the bracket relations on the vec
tor fields XI' These consist of the simple bracket 
relations 

[XuXa]=o, [xu xS]=-(XlO +X3), [xu X4]=X2-X9, [x2,XU ]=O, [X2,X4]=O, [x2,XS]=-x7, [x3,xlO l=O, 

[x3,xsl=o, [x3,x41=-xa, [x4,XS]=O, [x4,xa]=O, [X4,X7]=O, [X4,X9]=O [X4,XlO ]=-X7, [xs,xal=O, 

[XS,x7]=O, [xs,xa]=XlO -X3, [XS,xlO]=O, [xa,x7]=O, 

together with the more complicated constraints 

(2.20) 

(2.21) 

In order to determine a representation of this algebraic structure we adopt the procedure of completing the struc
ture into a Lie algebra. In order to do this it is necessary to introduce additional vectors xu, X12 ' X13 ' X 14' and XIS 

defined by 

We are able to embed the algebraic structure we have found previously into the Lie algebra defined by the nonzero 
Lie bracket relations, 

[Xu x2] = xu, [xu x3] = - X12' [X:t, x4] = (x2 - xg), [xu xs] = - (x3 + x lO ), [xu xa] = - X13' [Xl> x7] = - xu, 

[XUxg]=-x u , [xU XlO ]=-XI2 , [XU XI3 ]=(X,+xa), [xU x14 ]=(Xa-xl ), [Xl>X15 ]=XS' [X2,X3]=-XIS , 

[x2,XS]=-x7, [x2,xal=-x4, [x2,XS]=XI2 , [x2,xI21=t(xI+xs), [x2,xI3 1=x2, [X2,X14 ]=X2, [X2,XIS ]=2x2, 

[x3,xJ=-xa, [x3,x71=-xs, [x3,XS]=X I2 , [X3,XU]=~(XS-XI)' [X3,X'3]=-X3, [X3,X14 ]=-X3, [X3,XIS ]=-2x3, 

[x4,xlO l=-x7, [X4,X12]=(XI3-XI5)' [XI3 -XI5 ), [X4,XI3 ]=-X4, [x.,x14 ]=X4> [X4,X1S ]=X4, [X5,XS]= (xIo, x3), 

[x5,xg]=xa, [XS,Xll]=(XI4+XI5)' [X5,XI3 ]=-X5, [X5,XI4 ]=X5, [x5,xI5 1=-x5 [xa,Xs]=X I3 , 

[xa,XlO ]=-X5, [xa,Xll]=Xll , [Xa,XI2 ]=-X3, [Xa,XI3 ]=-2xa, [xa,xI5 ]=-Xa, [X7>XaJ=-xl., [x7,x9J=x., 

[x7, xu] = - X2, [X7' X12 ] = X12' [x7, x14 ] = 2x7, [x7, X15 ] = X7, [xs, xgJ = - Xll' [xs, x lO ] = X12' 

[xs, X13 ] = (Xl + xa), [xs, X14 ] = (XI - xa), [xs, X15 ] = Xu [Xg, x lO ] = (X 15 - Xl. - XI3 ), [Xg, X12 ] = ~ (xs - XI)' 

[X9,XI3 ]=X9, [X9,XI4 ]=X9, [xlo,x1l1=-~(xs+xl)' [X10,XI3]=-XlO, [xIO 'X14 ]=xlO , [Xll ,XI3 J=Xll , 

[Xu, x14 ] = - x~u [x11 , X15 J = Xu, [X I2 , X13 ] = X12 ' [XI2 , x14 ] = - X12 ' [XI2 , X15 ] = - X12' 

with aU other Lie brackets being zero. 

3. FOUR·DIMENSIONAL REPRESENTATIONS 

If one seeks a linear representation of the vectors Xi 

of the form 

(3.1) 

UI UI U2 ° 0 

U2 0 0 U I U2 

U3 U3 U. 0 0 

U4 0 ° U3 U. 
one can easily check that the R j defined by 

R l =-U30(UI -U.), R2=-UI ®U31 R3=-UI 0U2 

R4=-U20U3, RS=-U2 0U2, R 6 =-U20Uu 

(3.3) 

where bj=a/a!.;j, one discovers that a four-dimensional 
representation exists in a special form. Each of the 
matrices R j can be expressed in terms of Kronecker 
products of the four two-dimensional matrices Uu U2 , 

U3 , U4 defined by 
R7= - U20 U4, Ra= - U30 (UI + U4), Rg= U4 ® U3 (3.4) 

From the multiplication table of the UI> 
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R IO =-U40U2 , Rll =-U30U3, R I2 =-U3®U2, 

R13 = -(U4 - UI)0 Ul , R14 = -(UI - U4)0 U4 , 

R ,S = UI 0 (UI - U4 ), 
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provide vectors x I which form a representation of the 
algebra (2.22). 

We observe that a constant, to play the role of an 
eigenvalue, in the resulting inverse scattering equations 
may be included by replacing Rl by ifl defined by 

(3.5) 

More generally, if C and D are any two matrices such 
that 

[C, D] =0, (3.6) 

[F, Dj +[C, G]=O, (3.7) 

then F +AC and G +AD also give rise to a solution of 
(2. 19) and represent a general way of intrOducing a 
parameter. The case (3.5) corresponds to the trivial 
choice C = I, D = 0, and proves sufficient for illustratory 
purposes. 

This representation leads to the prolongation 
structure 

n 1 =d1;1 _ (A1;1 +A1;2 +1;3)dx - (1;3)ay, 

n2 =d1;2 _ (A*1;1 +A1;2 _ 1;4) dx _ (1;4)dy, 

n3 =d1;3 _ (<J>I;I + LI;2 +A!;3) dx - (<J>!;1 _R1;2 _AI;4) dy, 
(3.8) 

n4 = dl;4 _ (R *1;1 +,y/;2 + A1;4) dx _ (L*/;1 _ ,y/;2 +A */;3) dy. 

Sectioning nl onto a solution manifold of Eqs. (2.1)
(2.3) gives the inverse scattering problem 

A A 

1 OJ 
~x= 

A* A o -1 
<J> L A 0 ~, 
R* ,y o A (3.9) 

0 1 OJ I; = o 1 
-y <J> -R 0 -~ {. 

L* -,y A* 

Alternatively if we note that the interchanges U1 - U4 , 

U2 - U3 are an automorphism of the algebra (3.3) we 
can obtain a second representation of the algebra (2.22) 
and construct the following alternative prolongation 
structure: 

nl =d/;1 + (_ A/;1 _ ,y/;3 _R*/;4) dx +( -A *1;2 +,y1;3 _ L*/;4)dy, 

n 2 =d/;2 + (_ A/;2 _ LI;3 _ cf>/;4)dx + (AI;l +R1;3 _ <J>1;4)dy, 

n 3=d1;3 +(/;I_ AI;3 _A*1;4)dx +(_/;I)dy, 

n4 =d/;4 +( _ 1;2 _A1;3 _ A1;4)dx +( _ /;2) dy. 

(3.10) 

Sectioning this prolongation structure yields the inverse 

scatterin[g p:o:le: R*j 

o A L <J> 
~x = _ 0 A A * ~, 

o 1 A A 

[ 

0 A* -,y L*j 
-A 0 -R <J> 

~y= 1 0 1· 
01 0 

(3.11) 
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4. A PROLONGATION STRUCTURE FOR THE 
GENERALIZED SCHRODINGER EQUATION 

Suppose that a two-dimensional evolution equation 
which can be expressed in terms of a closed set of 2-
forms { 0' I}' i = 1, 2, ... ,N, possesses a linear prolonga
tion structure {Q1 o n S

}, i = 1, ... ,N, {3= 1, ..• ,M, in 
which the I-forms n S are expressed by 

II 

nS =6 (F~dx+G~dY)/;"+d/;s (4.1) 
IX::l 

and suppose that 
N II 

dns='LtSIQlI+L; 1J~AnY. (4.2) 
i=l rzl 

It has been shown1 that the 2-forms {ITS}, defined by 
- II 
nS=nsAdt + L; (GA -FB}$/;'dxAdy 

raJ 

+(A!dx+B~dy) Ad/;', (4.3) 

where A and B are constant (M XM) matrices which 
satisfy the conditions 

[A, Bj=O, 

[G, Aj +[B, Fj=O, 

(4.4) 

(4.5) 

provide a prolongation structure for a three-dimen
sional evolution equation defined by a set of N 3 -forms 
{ail, i = 1, ... , N, having the structure 

Q j =Q1 j
A dt+f3;o j=K+l, .•• ,N. 

The forms {3j are defined by the equation 
N 

~ jSif3; = [(dGA -dFB)/; jS II dx /\ dy. 
i=K+l 

(4.6) 

(4.7) 

(4.8) 

For further details of the procedure, the original work 
should be consulted. We note the Similarity of Eqs. 
(4.4)-(4.5) with Eqs. (3.6)-(3.7), which shows that 
we could have delayed introducing additional parameters 
until this final stage. We have called the forms {Q1I}, 
i = 1, ... ,K, which are basically unaltered, lineariza
tion forms and the remaining forms {QI j}, j = K + 1, ... , 
N, which are fundamentally generalized, the dynamic 
forms. We shall use this nomenclature in the remainder 
of this section. 

For the system (2.10)-(2.15), the dynamic forms are 
0'3' 0'4' 0'5' Q1e and Eq. (4.8) becomes 

J~ 0 ~ :] == (dGA -dFB) II dx II dy, 

~e (34 

(4.9) 

where A and B must satisfy the Eqs. (4.4) and (4.5). 

Tho :~t:ir 0 ~ I : J and B~ +t[~ O_~I: }4.101 

satisfy (4.4) and (4.5) and give 

f3a == 0, {34 = 0, 

i 1 
/3s=--2dAAdxAdy, {3 -":""dA*AdxAdy e- 2 ' 

H.C. Morris 
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corresponding to the generalized dynamic forms 

a6 = C1 6 /\dt +tdA*/\dX/\dy, 
(4.12) 

which yield to the generalized Schrodinger equations 
(1.1 )-(1.3). The generalization of the prolongation 
structure (3.10) is given by 

0 1 = dl;l /\ dt - (AI; 1 + AI;2 + 1;3) dx /\dt - 1; 3dy /\dt, 

(4.13) 
03=dI;3/\dt _(<p1;1 +L1;2 +AI;3)dx/\dt _(<p1;1 _R1;2 

-AI; 4) dy /\ dt +t [(AI;I +AI;2) dx /\ dy + (dx +dy) /\ dl;l], 

0 4 =d1;4 /\ dt - (R*1;1 + -v1;2 + A1;4) dx /\ dt _ (L*1;1 _ I¥!;2 

+A*1;3)dy/\dt +.£ [_(A*1;1 +AI;2)dx/\dV 2 . 

+ (dx -dy) /\d1;2]. 

For the alternative prolongation structure (3.11) we can 
choose 

_iro I~ n 
A - 2 Lor-o=-J 

i 0 0 1 ~10J 
and B=2 0 0 (4.14) 

to yield the nonlinear Schrodinger equation (1. 1 )-(1. 3). 
The corresponding prolongation structure can easily be 
calculated from (4.3). However, it is suffiCient for our 
present purposes of constructing an inverse scattering 
problem to concentrate on the prolongation structure 
(4.13). 

Sectioning onto a solution manifold of Eqs. (1.1)
(1.3) gives the equations 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21 ) 
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(4.22) 

If 1;;=0, then (4.15)-(4.22) reduce to Eqs. (3.11) as 
expected. If I;~=O the Eqs. (4.15)-(4.18) become 

I;~= _,\,1;1 _A1;2, 1;~=A*1;1 +'\'1;2. (4.23) 

Equations (4.19) and (4.20) become 

~il;:= -(tAA* +,\,2)1;1 +(M, _,\,A)1;2, 
(4.24) 

~n;=(~A: HA*)1;1 +(~AA* +,\,2)1;2, 

which is equivalent to the standard Zakharov and 
Shabat4

,5 form of inverse scattering problem for the 
nonlinear Schrodinger equation 

. 2 0
2 21 12 z-A+-A+ AI A=O. at oy2 (4.25 ) 

The case I; ~ = 0 can clearly be treated in the same way 
but is basically the same. 

If we use the Eqs. (4.16) and (4.18) to eliminate 1;3 
and 1;\ we can reduce Eqs. (4.15)-(4.22) to the more 
compact form 

(4.26) 

(4.27) 
hl;~ = _L*1;1 + .pI; 2 -A *I;~ +1;;,. 

This is the form of the inverse scattering problem for 
the Eqs. (1.1)-(1. 3). An alternative derivation of 
Eqs. (4.26)-(4.27), starting from a general form of 
inverse scattering problem and determining the Eqs. 
(1 . 1) - (1. 3), has just been presented by A blowitz and 
Haberman3 and represents a complementary approach 
to the same problem. 

lH.C. Morris, J. Math. Phys. 17, 1870 (1976). 

2H. Wahlquist and F. Estabrook, J. Math. Phys. 16, 1 
(1975). 

3M. Ablowitz and R. Haberman, Phys. Rev. Lett. 35, 1185 
(1975). 

4V. Zakharov and A. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 
(1971) [Sov. Phys.-JETP 34,62 (1972)]. 

5M. Ablowitz, D. Kaup, A. Newell, and H. Segur, Phys. 
Rev. Lett. 31, 125 (1973). 
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Axisymmetric stationary Brans-Dicke vacuum fields 
B. K. Nayak* and R. N. Tiwari 

Department of Mathematics. Indian Institute of Technology. Kharagpur-721302. India 
(Received 22 March 1976) 

It is shown that the axisymmetric stationary Brans-Dicke vacuum solutions can be obtained from the 
solutions of the axisymmetric stationary Einstein vacuum fields and also the axisymmetric static Brans-Dicke 
vacuum fields. 

1. INTRODUCTION 

To find the exact solutions to the highly nonlinear 
Einstein's field equations, the well-known methods of 
Majumdar,1 Papapetrou,2 Ehlers,3 Buchdahl,4 and 
Bonnor5 have been found to be very much useful. With 
the help of these methods one can generate exact solu
tions from the known solutions of the Simpler situations. 
In the Brans-Dicke (BO) theory, 6 the field equations 
being more complex, it is natural to see if the solutions 
to these field equations can be generated from the al
ready known simpler solutions either of the BO theory 
or of the conventional Einstein theory. This, in a way, 
will not only reduce, to a large extent, the effort of 
solving much more involved nonlinear field equations, 
but will also provide a clear basis from the viewpoint 
of physical interpretation of the solutions of the BO the
ory. Along this line a few methods have been suggested 
by Janis e t aI, 7 Buchdahl, 8 and the present authors. 9 

These, however, provide the exact, but only static 
solutions to the BO field equations. Recently, McIntoshl0 
extended this further by establishing the method of gen
erating the axisymmetric stationary BO vacuum solu
tions from the axisymmetric Einstein vacuum solutions. 
This method, however, is not direct. It, finally, in
volves a set of three differential equations to obtain the 
solution of the BO field equations. In the present paper 
we have established a direct procedure of generating 
the solutions by the method of identification. This meth
od was used earlier by the present authors l1 to obtain 
exact plane symmetric BO vacuum solutions. It is in
teresting to note that the BO vacuum solutions so ob
tained go over to the Einstein vacuum solutions when 
the BO coupling parameter w tends to infinity. This, 
of course, is in accordance with the requirement of the 
BO theory. Further, we have also obtained a theorem 
for generating the axisymmetric stationary BO vacuum 
solutions from the axisymmetric static BO vacuum 
fields. 

2. FIELD EQUATIONS 

In the canonical representation, the BO vacuum field 
equations are given as 

w 1 
R iJ =-7P cf>,icf>,J- -;pcf>'iJ (2.1) 

and 

gi1cf>;il=0, (2.2) 

where w is the BO coupling parameter, and comma and 
semicolon followed by an index denote partial and co
variant derivatives, respectively. The axisymmetric 
stationary metric is taken in the form 
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(dS)2 = exp(2U)(dt + WdcI»2 

_ exp(2K - 2U)[ (dx1)2 + (dx2)2]_ h2 exp(- 2 U)(dcI»2 , 

(2.3) 

where U, W, K, and h are functions of xl and x 2 only. 
The Significance of the choice of the stationary metric 
in this form has been thoroughly discussed by Matzner 
and Misner12 and Misra and Pandey. 13 The surviving and 
independent field equations, from (2.1) and (2.2), for 
the line element (2.3) are 

2[(U,d - (U,1)2] + 2K,trl _ 2K~h'2 

+ exp(4U) [(W )2 _ (W )2] + ! (h - h ) 2h2 ,1 ,2 h' 22 ,11 

=- (w+1)[(P,2)2- (P.l)2]- (P,22-P,l1) 

- 2(K.l - U. 1)P.l + 2(K.2 - U. 2)P.2, (2.4) 

2U U _ K.2h.l_ K. 1h.2_ W,I W.2 exp(4U) +!h 
.1 .2 h h 2h2 h .12 

=- (w + 1)P.1P.2 - P.12 + (K.2 - U. 2)P.l + (K.l - U. 1)P.2, 

(2.5) 

1 
W. l1 + W. 22 - h (W. 1h.l + W. 2h.2) +4(W. 1U. 1 + tt:2 U,2) 

=- (W. 1P.l + W. 2P.2), (2.6) 

1 exp(4U) 2 2 
U.11+U.22+h)(U.lh.l+U.2h.2)+ 2h2 [(W. 1) +(W. 2)] 

=- (U. 1P.l + U.zP.2)' 

h.l1 +h.22 =- (h. lP. 1 +h. 2P.2), 

and 

(2.7) 

(2.8) 

P.l1 + P.22 + (P.l)2 + (p. 2)2 = - ~ (h. 1P.l + h. 2P.2), (2.9) 

where cf> = el> and subscripts 1 and 2 following a comma 
denote partial differentiation with respect to xl and x 2 

respectively. 

3. SOLUTIONS FROM THE AXISYMMETRIC 
STATIONARY EINSTEIN VACUUM FIELDS 

Let us consider Einstein vacuum field equations 
(RiJ = 0) corresponding to the metric 

(ds)2 = exp(2 V) (dt + WdcI»2 - exp(2K - 2V) 

x [(dx 1)2 + (dx2)2]_ H2 exp(- 2V)(dcI»2, (3. 1) 

where Wand K are the same as those given in (2.3). 
This set of equations (given in the Appendix and to be 
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referred as A) suggests that H satisfies the equation 

H,11 + H,22 =0. 

From (2. 8) and (2. 9), it can also be found that heP 

satisfies a similar equation, viz., 

(heP),11 + (heP), 22 = O. 

This leads us to identify H with heP as 

H=hei>. 

In view of (3.4) and the following relation: 

V=U+tp, 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

the set of equations A reduces in terms of U, p, h, K, 
and W to 

2[(U )2_ (U )2]+ 2K'lh,l_ 2K,2h,2 
,2 ,1 h h 

exp(4U) [ 2 ( 2] 1 ( ) 
+ 2h2 (<<-:1) - W,2) +"h h,22- h,l1 

=- U(P,2)2- (P,I)2]- (P,22 - P,l1) - 2(K,1 - U,I)P,1 

2 
+ 2(K,2 -U,2)P,2 +"h (h,IP,I- h,2P,2), (3.6) 

2U U _K,2h,t_K,lh,2_ Wo1W,2 ex (4U)+!h 
,1 ,2 h h 2h2 Ph' 12 

::= - ip, tP,2 - P,12 + (K,2 - U,2)P,1 

1 
+ (K,1 - U,I)P,2- "h (h,IP,2 + h,2P,I), (3.7) 

1 
W,lt + «-:22 - Ii (<<-: lh,l + W,2 h,2) + 4(W,1 U,I + «-:2 U,2) 

::=- (W,IP,1 + W,2P,2), (3.8) 

1 exp(4U) [ 2 2] 
U,l1+ U,22+"h(U,lh,t+ U,2h,2)+ 2h2 (W,1) + (W,2) 

+ ~[P'l1 + P,22 + (p,t)2 + (p, 2)2 + t (h,IP,1 + h,2P,z)] 

(3.9) 

and 

(h,l1 + h,22) + 2(h,!p,! + h,2 P, 2) + h[p ,11 + P,22 + (P,I)2 + (P,2)2] 

::= O. (3. 10) 

On comparing the Eqs. (3.6)- (3.9) with (2.4)- (2.7) we I 

with the BD scalar 1> given as 

(3 0 18) 

It can be verified that for w - 00, (3.17) reduces to 
(3.16) and 1> approaches unity. This agreement makes 
this BD vacuum solution physically interesting and 
hence deserves a critical investigation. 
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observe that they are equivalent if the following rela
tionships are satisfied: 

and 

(w - t)[(P,2)Z - (p, d] = (2/h)(h,2P,2 - h,! P, d, 

(w - t)P,2 P,I = (l/h)(h,1 P,2 + h,2P,I), 

(3.11) 

(3.12) 

P,l1 + P,22 + (P,I)2 + (P,2)2 = - (l/h)(h,1 P,2 + h,2 P,2)' 

(3.13) 

The Eq. (3.10) together with (3.13) is equivalent to the 
set of Eqs. (2.8) and (2.9). Hence the set of Eqs. 
(3.6)- (3.10) along with (3.13) is equivalent to the set 
of Eqs. (2.4)- (2.9), provided the conditions (3.11) and 
(3.12) are satisfied. That is, the BD vacuum axisym
metric stationary solutions are obtainable from the 
Einstein vacuum axisymmetric stationary solutions 
when the relations (3.11) and (3.12) are valid. These 
two conditions, however, suggest a relationship be
tween P and h as 

P = [4/(2w - 1)] Ink, (3.14) 
which in view of (3.4) determines P and h, in terms of 
Has 

P=(4/(2w+3)]lnH and h=[Hj<2w-f}!(2w+3). (3.15) 

Thus, we find: Given any Einstein vacuum axisymmetric 
stationary solution (Uo, Wo, Ko, Ho), one can always gen
erate a corresponding BD vacuum axisymmetric 
stationary solution (UB, WB,KB,HB), where 

UB=Uo- tln1>, WB=WO, 

KB=Ko, H B=[Ho](2w-1l/(2w+3), 

with the BD scalar 1> being given as 
1> = (Ho J4 1 (2w+3). 

A useful application of this theorem is made to ob
tain the BD vaCuum solution corresponding to the Kerr 
solution. The Kerr solution!4 in the form of the metric 
(203) is given as13 

(ds)2 = (dt)2 _ (L2 +a2 cos20)[(dO)2 + (dR)2] 

_ (L 2 + a2) sin20(d<I»2 - 2 2mZL:::27,o (dt + a sin2 0 d<I»2, 
L +a cos 

(3.16) 

where L = eR + m + [(mZ - aZ
)/ 4]e-R

• In view of the above 
mentioned theorem, the BD vacuum solution corre
sponding to (3.16) is 

(3. 17) 

14. SOLUTIONS FROM THE AXISYMMETRIC STATIC 
BRANS-DICKE VACUUM FIELDS 

In the following steps, we show that the set of equa
tions (2.4)- (2.9) can be reduced to the set of BD vacu
um axisymmetric static field equations. This is done by 
introducing an auxiliary function L as 

e-2U = /l.eP cosh2L, (4.1) 
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and defining two relations by 

~1=-2AhePL,2 and ~2=2AhePL,1o (4.2) 

where A is any arbitrary constant. With the help of 
(4.1) and (4.2), the relation (2.6) is identically satis
fied and (2. 7) reduces to 

1 
L,l1 + L,22 + Ii (L, lh, 1 + L,2h, 2) = - (L, 1 P, 1 + L,2P,2)' 

Equation (2.4), in this case, reduces to 

2[(L )2_(L )21+ 2X,lh,I_2X,2h,l+!(h -h) 
,2 ,1 h h h' 22 ,11 

=- (w+1)[(P,2)2- (P,I)2]_ (P,22-P,11) 

- 2(X,1 - L, I)P, 1 + 2 (X, 2 - L,2)P,2, 

where the function X is defined to be such that 

X - K + L,I + tPi P 
,1- ,I P +hh ,I> 

,1 ,1 

L,2 + tp 2 
X,2=K,2+ P +h 7h P,2' 

,2 ,2/ 

Equation (2. 5) reduces to 

2L L _ X, Ih, 2 _ X, 2h, 1 + ! h 
,1 ,2 h h h' 12 

(4.3) 

(4.4) 

(4.5) 

=- (W+1)P,IP,2-P,12+(X,I- L ,I)P,2 + (X,2- L ,2)P,1> 

(4.6) 

when the BD scalar 1> = eP satisfies 

1>,2h,1 =1>,lh,2' (4.7) 

With (4.7) being valid, the integrability condition for Eq. 
(4. 5) requires the BD scalar 1> to satisfy 

L,11>,2 =L,21>,1' (4.8) 

But, in this process, the Eqs. (2. 8) and (2.9) are not 
affected. Hence, with the relation (4.7) and (4. 8) being 
valid, the Eqs. (4.3)-(4.6) along with (2.8) and (2.9), 
now constitute the set of BD vacuum axisymmetric 
static field equations corresponding to the metric 

(ds)2 = e2L (dt)2 _ e2X-2L [ (dx1)2 + (dx2)2] _ h2e-2L (dip)2. 

(4.9) 

Thus, given any axisymmetric static BD vacuum 
solution (L,X, h) along with the scalar 1> satisfying (4.7) 
and (4. 8), one can construct the corresponding axisym
metric stationary BD vacuum solution (U, W, K, h) with 
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the same BD scalar 1>, where U, W, and K are deter
mined from (4.1), (4.2), and (4.5), respectively. 

It may be remarked here, that for 1> = const this the
orem reduces to that of Misra anq Pandey15 obtained for 
axisymmetric stationary Einstein vacuum fields. 
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APPENDIX 

The set of independent equations from the Einstein 
vacuum field equations R 1j = 0 corresponding to the 
metric (3.1) are given by 

2[(V,2)2 _ (V,lf] + 2K~H'1 _ 2K,~H'2 

e4V 1 
+ 2W[(W,1)2- (W,2)21+ Jj(H,22- H,11)=0, 

2V V _ K,2H,1 _ K,IH,2 _ e
4V 

W W +!.H =0 
,2 , I H H 2W' I ,2 H ,12 , 

1 e4V 
V, 11 + V,22 + Jj (V, tH,t + V,2H ,2)+ UP [(W, 1)2 + (W,2)2] = 0, 

and 

H,l1 +H,22=0. 
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The n-bubble series in the theory of the classical one
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With the aid of the Mellin transform, an exact expression for the three-dimensional Fourier transform 
G(k) of the renormalized sum exp[ -Aexp( - r)/ r]-1 + Aexp( - r)l r for n-bubble graphs is given in two 
equivalent forms, where the plasma parameter A is not necessarily smaller than unity. Its several 
properties, such as small and large k limits, are discussed in detail. 

INTRODUCTION 

In the usual nodal expansionl
-4 of the potential of aver

age force UJ2{r) = kB Tlng2{r) for the pair correlation func
tion R"2{r) of the classical one-component Coulomb gas, 
we meet the well-known difficulty2,3 that the series of 
UJ 2{r) with respect to the plasma parameter A = e2

/ 

(k B TAn), where An is the Debye length, cannot be pur
sued beyond the second-order term, when only the long
range (Debye) resummation of the bare Coulomb inter
action l/r is taken into account. This stems from the 
nonexistence of the Fourier transform of the Debye 
potential 

(47T/k).fo~ drrsin(kr)(e-r /r)" 

for n? 3. To circumvent this difficulty, we have re
course to the well-known trick due to Abe and Meeron5 

which consists in the resummation to all orders of the 
most diverging n bubbles, at y= 0, with n Debye lines 
curved together between the (two) root points, through 
the expression (Fig. 1) 

~ (_ A)" (e- r
)" . Ae-

r 

G(r) =L; -,- - = exp{- Ae-r /r) -1 +-, (1) 
"=1 n. r r 

where r is measured in units of AD' In order that the 
nodal expansion be worked out for UJ 2(r) in the Fourier 
space, the actual quantity of interest is 

G{k) =..!!. dyrsin(kr)[exp{- Aexp{- ar)/r) 4 i~ 
k 0 

- 1 +A(exp(- ar)/rl], (2) 

where an arbitrary a (Rea> 0) is retained for the sake 
of generality. 6 This problem has apparently been treated 
by several authors3

,7 in the past. To our knowledge, how
ever, neither an explicit expression of G(k) nor a gen
eral discussion of its properties has been given in the 
literature. Also, let us notice that the technique of the 
modified Mellin transform, first used by Iwata7 to study 
the simpler quadrature 

J=27Tp2 fo~ drr[exp{- j3q(y») -1 +j3q(rl - (j32/2!)q2(y)], 

q(y) = e 2 exp{- kDr)/r, 

is quite a powerful tool for the evaluation of the type (2). 

During the study of the asymptotic behavior of chain 
graphs in which 2 bubbles are combinatorially replaced 
by higher-order bridge graphs, graphs which are not 
taken into account in the usual hypernetted-chain equa-
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tion, we have had to renormalize a given bridge graph 
of order n with 1 Debye lines and k nodal points (n = 1 
- k). We also found it necessary to give a qualitative 
indication on how bridge graphs of lower order (n = 3 
and 4) behave at large distances (for the Fourier trans
form, this corresponds to the small k limit). 

The purpose of the present work is therefore to give 
mathematical support to our previous works on the 
asymptotic behavior of the equilibrium pair correlation 
function in dense electron gas. The paper is organized 
thus: Analytic derivation of Eq. (2) is given in Sec. 1. 
Section 2 is devoted to an alternative evaluation of G{k) 
by direct expansion of sinky in Eq. (2). Equivalence of 
two results, Eqs. (10) and (15), is also discussed. After 
having studied the convergency of the series (10), in 
Sec. 3 we examine in detail both small and large k 
limits of G{k), corresponding respectively to large and 
short distances of G(r). 

I. EVALUATION OF G(k) 

The three-dimensional Fourier transform of G(y), 
Eq. (2), can be obtained straightforwardly by means of 
the Mellin transform 

1 ia+i~ 
e-x -1 +x=-2 . dsr(s)x-s, 

'TTl cr .. i tit) 

- 2 < a < - 1, 

where r(s) is the gamma function. Setting x = Ae-r /r, 
we obtain 

G{k) = ~1T i~ drrsin{kr) 2~i 

(3) 

La+I'" (A )_S 
x dsr(s) - exp(- ar) , -2<a<-1 

cr .. i<XI r 

= 41T ~ (a+l= dsr(s)A-s 
k 21Tl )a_1 ~ 

x i~ drrs
+
1 sin(kr) exp(asr), a < 0, (4) 

with Res"" a < - l. The last step is justified by the ab
solute summability of the integrand with respect to sand 
r, respectively (Fubini' s theorem). Now, using the 
formula9 

G(r). c::> + e + .g. + -@- + ... 

FIG. 1. Iwata's sum G(r) representing the resummation to all 
orders of the most diverging n bubbles at the origin. 
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i ~ dt t"-l exp(- at) sin(bt) = r(v)(a 2 + b2J-" 12 

x sin (v arctan(~)), 
b -, 0, Rea> 0, and Rev> - 1, (5) 

we obtain 

x sin [(s + 2)arctan( _ :s) J ' (6) 

where a = uA and b = kA. The restriction Re(s + 2) > - 1, 
necessary for r(s + 2) to be analytic at the right of s 
= - 1, can be easily relaxed by analytic continuation of 
the integrand onto the left of the Mellin contour, where 
r(s)r(s+2) has a double pole at s=-n, n~2. 

In order to prove that there is no contribution to G(k) 
from the large semicircle at the left of the Mellin con
tour, we first expand the integrand for large 1 s I. With 
the aid of the identities 

F(s) '= sin ~s + 2) arctan (_ :s) ) 

'" sin ( - ~ + 3;:2 + ... ) - - sin(~), I s I » 1 

and of Sterling's formula 

In[r(s)r(s + 2)] '" (2s + l)lns - 2s + In21T, 

we have 

lim I r(s)r(s + 2)(aZsZ + b2t(s+Z) 12F(s) I 
lsi .. 00 

Upon putting s =p exp(i8), we see 

Re InA = In(-?sin~) 

+ p [In(~) '0'(')- ["~IntO) + 2'OS(')]} lop, 

1T /2 + TJ < 8 < 31T /2 - TJ 

with limo _ ~TJ- + O. Since cos8 < 0, Re InA ~ ~ - 00. Thus 
ReA-O. Q.E.D. 

We are now ready to evaluate the residues of Eq. (6) 

at the double pole s = - n of r(s)r(s + 2). To do this the 
Cauchy's power series expansion of r(s)lO is of the 
order 

limr(s) = (-t (_1_ + </J(n + 1) +~(s +n)An+ O[(s +n)Z]\ 
S-_n n. s+n ~ 

(7) 

where An = 1T2/2 + </JZ(n + 1) - </J'(n + 1) and </J(z) = r' (z)/ 
r(z) is the di-gamma function. The straightforward cal
culation then yields 

1 
r(s)r(s + 2) = r(n + l)r(n -1)(s + n)2{1 + (s + n)[</J(n + 1) 

+ </J(n - 1)] + ~(s + n)Z[An +An_z 

+2</J(n-l)</J(n+1)]+0[(s+n)3j). (8) 
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Now, given an entire function H(s) in the left of the 
Mellin contour, we have 

1 i'+i~ -2 . ds r(s)r(s + 2)H(s) 
1fl o-i OQ 

~ 1 [ 
=;Sr(n -l)r(n + 1) [</J(n - 1) + </J(n + 1) ]H(- n) 

+ (d~ H(S») s~nl -2< (J < - 1. (9) 

Putting H(s) = (a 2s 2 + b2)-(s+z) 12 sin[(s + 2) arctan(b/ 
- as)], we obtain successively 

(
an ) n-2 

H(- n) =- -8- sin«n - 2)8n) 
cos n 

and 

(
an )n-2 [ ( an ) 

H'(-n)= cos(8
n
) In cos(8

n
) sin«n-2)8n) 

n- 2 ( J +8ncos«n-2)8n)+-n-cos8nsin (n-3)8n) , 

where tan8n= b/an, 0": 8n < 1T/2. 

Finally we get the desired expression 

G(k)- 41TA2£_ 1 (~)n_z 
- k n=2r(n-l)1'(n+1) cos(8n) 

. { [In (CO:(~n») - </J(n - 1) - </J(n + 1)J sin«n - 2) en) 

( n- 2 } +8ncos (n-l)8n)+n-cos8nsin«n-3)8n) . 

(10) 

This expression is equivalent to that given by Del Rio 
and DeWitt. 3 To see this, it is sufficient to set, in their 
Eq. (19), n_ik=(n2+k2)1/Zexp(_i8n) with tan(8n)=k/n. 
Then after simple algebra we obtainll 

1 
G(k)RW = 41TA G(k)VF' 

II. ALTERNATIVE EVALUATION OF G(k) BY 
EXPANSION OF sin (kr) IN EO. (4) 

Equation (4) can be rewritten as 

G() 41T~' (_)1 r~ ( 2/+1 
k =kt'o (2l + I)! Jo drr kr) 

x [exp(- Ae-<>r /r) - 1 + Ae-<>r /r] 

~ (- k2)! 1 l'+i~ 
= 41T.0 (21 1) , -2' . ds r(s)A-

5 

!~O + . 1Tt ._,~ 

x 1~dry2l+z+5exp(CIIsr), Res<O, -2<a<-1. 

(11) 

Now with the r integration carried out with the change 
of variable r = At, we get 

G(k) = 41TAz '£ (_)1 (kA)21+1 _1 
k 1 =0 (21 + l)! 21Ti 

L'+i~ x ds r(s)1'(s + 21 + 3)(- CIIAs)-(S+21+3). 
a ... t oo 

(12) 
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Next, since in the vicinity of the double pole s = - n, 
1'(s)1'(s + 2l + 3) can be expressed as 

1 
r(s)1'(s + 2l + 3) = - 1'(n + 1)1'(n _ 2l- 2)(s + n)2 

x{1 + (s + n)[Iji(n + 1) + Iji(n - 2l- 2)] 

+ Hs + n)2[An +An_2/ _3 

+ 21ji(n + 1)Iji(n - 21- 2)] + O[(s + n)3J}, 

(13) 

the s integration straightforwardly gives 

1 la+l~ 
-. ds 1'(s)1'(s + 21 + 3)(- O'AS)"(S+21+3) 
2m a_I ~ 

~ (an)n-21-3 ( n - 21 - 3 =E 1'(n + 1)1'(n - 21- 2) In(an) +--n--

-1ji(n+l)-Iji(n-21-2)), a=O'A. (14) 

Finally G(k) is given by 

4 A 2 ~ (kA)2/+1 ~ n-2/-3 
G (k) =_7T_ 6 (_) 1 ~ =-_a~n~,----=:-= 

k 1=0 (21+1)!n=21'(n+l)1'(n-21-2) 

( 
n - 21- 3 ) x In(an) + n - Iji(n + 1) - Iji(n - 21 - 2) . 

(15) 

The radius of convergence of the series, associated 
with that of sinkr, is obviously 00. The two forms, Eqs. 
(10) and (15), are not a priori the same. In Appendix A 
it is shown that they are indeed identical. 

III. MISCELLANEOUS PROPERTIES OF G(k) 

A. Convergence of the series (10) 

The series is not uniformly but absolutely convergent. 
To prove this we use for large n the asymptotic expres
sion of the gamma and the di-gamma functions 

and 

r(n + 1) "" ffi nn+1 12e-n 

( ) 1 ~ B21 
ljin ""lnn--2 -L..J~1 ' n 1=1 n 

where B21 is the Bernouilli number. Denote by Un the 
nth term of the series. Then 

1 (e
2
A) n+2 [ (k)] Un n~l 27T(eA)4 n n (InA - Inn) sin(k) + 0 n 

e . 
= 27T(eA)3 (v n inA - w n) sm(k), (16) 

with Vn= (e2Aln)n+l and wn=vnlnn. According to 
D'Alembert's ratio test12 for absolute convergence we 
have successively 

Vn+l 2 • (n ) n n . n lim-=eAhm -- ~=eAhm~-O, 
n-~ 1In n-~ n+l (n+1) n-~ (n+l) 

1· Wn+1 A l' n In(n + 1) Im--=e Im~----
n-~ Wn n-~ (n + 1) Inn 

=eAlim~[l+-l- (l-..!+A- ... )~ 
n- ~ (n + 1) n Inn 2n 3n 'J 

-0. 
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Therefore, Z; :=2 Un is absolutely convergent for any 
value of A. However, the series is not uniformly 
convergent. 

Proof: Construct the partial sum 

RN ,p(k, A) =UN+1(k, A) + ... + uN+p(k, A) 

e N.::? 
""~( A) sink U (1InlnA-wn), N»1. (17) 

7T e n=N+1 

In our case 1In+dvn = e2A(1 + 1In)-nnl(n + 1)2 and, since 
exp[nl(l + n)] < (1 + 1/n)n < e for any n, we have the 
inequality 

A n vn+1 A n 1 In 
e ~1) <-<e ~1) e . n + vn n + 

Then 

11 n+1 eA N N' 1 2 -""-n ,for +p ~n~ + » . 
vn 

The first term in RN ,p can thus be approximated by 

( )

N+1 
(eA)2 N (N - I)! 

where en(x) = Z; ; =0 x, 11!. In the same way, since 

wn+1 _ 1In+1ln(n + 1) ~ 1In+1 
wn - 1In Inn vn 

for sufficiently large n, 
N+!> N+p 
E wn "" L; 1In. 

n=-N+l n=-N+l 

Therefore, 

1 (A)e/A 
RN ,p(k, A)"" ~sin(k) In\e 

xN"3/2[eN+p_1(eA) - eN_1(eA)]. (18) 

In order that I RN ,p(k, A) I < E, E being an infinitesimal
ly small positive number independent of N, we observe 
immediately that the smallest integer value N for which 
the condition is satisfied depends on A. The convergence 
is nonuniform. Q. E. D. 

B. Limiting case 0' == 0 of Eq. (10) 

Since the ratio b I a = klO' is independent of A, two 
limiting cases have to be checked: 0' - + 0 and 0' - + 00 • 

The limiting case 0' = 0 has already been considered 
by Bowers and Salpeter. 13 In our notation this corre
sponds to the limit en- 7T/2 and thus cosen"" O'nlk. 

Equation (10) then reads 

( 
7T f (kA)n 

G k)=4+~r(n+l)r(n+3) 

x [_ [Iji(n + 1) + Iji(n + 3) - In(kA)] 

XSin(~7T) +~COS(~7T) l (19) 

Now the first term in the sum can be expressed in 
terms of the Kelvin function 
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1(2)21 . (kTT) (1_k)!(X2)k 
ker2x=2 X 20 sm 2 -k-!- "4 

where ber2x and bei2x are also Kelvin's functions re
lated to a Bessel function of a complex argument through 
the relation14 

ber2(x) ± i bei2(x) =J2(x exp(± i3TT /4». 

Setting x 2 /4 = kA and by the use of the power series 
expansion of ber2x and bei~, 

£ (kA)1 (Sin)~~(k~ ber2(21kA) ) 
l=ollf'(1+3) cos 2 1 ' 

- kl\. bei2(21ki\) 

we finally obtain 

(20) 

This expression is equivalent to that previously ob
tained by Bowers and Salpeter. 13 

C. Small k expansion, equivalent to large 0: limit 

The small k expansion (k2 « 1) of G(k), directly de
rivable from Eq. (15), is of particular interest for the 
asymptotic behaviors (r- 00) of a Meeron line, when 
we take into account the resummation to all orders of 
the most diverging graphs at r = O. In fact it allows us 
to perform order by order the nodal expansion of the 
potential of average force with finite graphs. 4 ,8 The re
quired limit is reached upon setting b - 0, cos( en) - 0, 
and therefore en"" klan in Eq. (10). To zeroth order in 
k 2

, we recover Iwata's result. 7 This is easily seen when 
Eq. (10) is given in the form 

;~~ 4~ [G(k) - 4~A2 2~ arctan (2ko:) ] 

3 ( ~. (an) n-3 
= A E r(n + 1)r(n _ 2) [In(an) -I/J(n + 1) -I/J(n - 2) J 

+aL (an)n-4 )-A3£ (an)n-3 
n=4 r(n + l)r(n - 3) - n=3 r(n + l)r(n - 2) 

( 
n-3 ) x In(an)+-n--I/J(n+1)-I/J(n-2) , a=o:A. (21) 

This is identical to Iwata's expression except the 
multiplicative factor A 3 • Now, with only the zeroth- and 
the first-order terms with respect to k 2 in Eq. (15) re
tained, G(k) assumes the form (0:= 1) 

G(k) =4TTA2[A(A) - B(AJk2J, (22) 

where 

1 ;; (An)n-3 
A(A) =4+A~ r(n + 1)f'(n- 2) 

( 
n-3 ) x In(An) + -n- - I/J(n + 1) - I/J(n - 2) (23a) 

and 
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1 [1 A A2 3 ~ (An)n-5 
B(A) ='6 8- 54 + 96 +A ~ r(n + l)r(n - 4) 

x (In (An) + n ~ 5 _ I/J(n + 1) - I/J(n - 4») ] . (23b) 

Two functions A(A) and B(A) are positive and decrease 
monotonically with A. The corresponding G(r), Eq. (2), 
shows a Debye-like decrease at infinity through the 
relation 

G(r) r.:?l A 20: exp(- (3r)/r, (24) 

with 0:=A2/B and P=(A/B)1/2. Note thatA(A) and B(A) 
are also defined as integrals15 (see Sec. 2), 

A(A) =iz 1~ drr[exp(- Ae-r /r) - 1 + Ae-r /rJ (25) 

and 

B(A) = 3!lA2 !O'" drr4[exp(- Ae-r /r) -1 +Ae-r /rJ. 

(26) 

Next, when we relax the condition I k21« 1, Eq. (22) 
certainly breaks down. In this case we have to include 
higher order terms in the k2 expansion of G(k). Slightly 
modifying Eq. (15), we write G(k) in the following form: 

'" 
G(k)=4TTA2~ (_)IAl(A)k2l, (27) 

1=0 

where 

+ Ae-<Y.r /rJ (28) 

_ A 21+1 [2g 2 (_)n f'(21 + 3 _ ~ 
- (21 + 1)! ~ n! (o:An)2/+3 

'" (aAn)"-21-3 ( 
+ n~+3 r(n + l)1'(n _ 2l- 2) In( o:An) 

n-2l-3 + -'---=-'--..::. I/J(n + 1) - I/J(n - 2l - 3) ) ] . (29) 
n 

A large A limit of A I (A) with 1 fixed is discussed in 
Appendix B. 

Extensive numerical analysis of A 1 (AJ as a function of 
A has been carried out on the computer UNIVAC, first 
by summing up the infinite series (23a) and (23b) with 
a prescribed convergence criterion, and then by direct 
integration of Eqs. (25) and (26) by means of the Gauss 
quadratic method14 (6 subintervals, 24 points in each). 
We have verified that, for 0.1'" A '" 10, two methods 
give the results with absolute error smaller than 10-6• 

For those values of A greater than 10, only the integra
tion method is used, because of a slow convergence of 
the series. Numerical values of A I (J\) for 0 ~ 1 ~ 7 are 
given in Table 1. 

Now it is interesting to see to what extent the trunca
tion of the series (27) may well represent the true G(k). 
One way of testing a validity of the approximation, Eq. 
(22), is to evaluate poles of the integrand for the w2(r) 
integral 
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TABLE 1. Coefficients AI(N in the k 2 expansion of G(k). 

A Ao(N A(A) A 2(A) A(A) A (A) A5(A) As(A) A(A) 

0.5 1.6298(- 1) 1. 9551(- 2) 3.0760(- 3) 5.5536(-4) 1. 0833(- 4) 2.2181(- 5) 4.6930(- 6) 1. 0155(- 6) 
1.0 1. 3356(- 1) 1. 8570(- 2) 3.0311(- 3) 5.5277(- 4) 1.0816(-4) 2.2169(- 5) 4.6929(- 6) 1. 0168(- 6) 
1.5 1.1558(-1) 1.7761(-2) 2.9894(- 3) 5.5026(-4) 1.0799(-4) 2.2156(-5) 4.6919(- 6) 1.0168(- G) 
2.0 1.0292(-1) 1. 7070(- 2) 2.9504(- 3) 5.4782(-4) 1.0782(-4) 2.2144(- 5) 4.6910(- 6) 1.0169(- 6) 
3.0 8.5724(- 2) 1.5929(- 2) 2.8791(- 3) 5.4314(-4) 1.0749(- 4) 2.2119(- 5) 4.6890(- 6) 1. 0167(- 6) 
4.0 7.4267(- 2) 1.5007(- 2) 2.8150(-3) 5.3869(-4) 1. 0717(- 4) 2.2094(- 5) 4.6871(- 6) 1. 0166(- 6) 
5.0 6.5929(- 2) 1.4236(- 2) 2.7565(- 3) 5.3444(-4) 1.0685(- 4) 2.2070(- 5) 4.6851(- 6) 1. 0164(- 6) 
7.0 5.4403(-2) 1.2998(- 2) 2.6530(- 3) 5.2646(- 4) 1. 0624(-4) 2.2022(- 5) 4.6812(- 6) 1. 0161(- 6) 

10.0 4.3672(- 2) 1.1619(-2) 2.5223(- 3) 5.1557(-4) 1.0537(-4) 2.1952(- 5) 4.6754(- 6) 1. 0156(- 6) 
15.0 3.3381 (- 2) 1. 0021(- 2) 2.3480(- 3) 4.9962(- 4) 1.0402(-4) 2.1839(- 5) 4.6660(- 6) 1. 0148(- 6) 
20.0 2.7273(- 2) 8.9034(- 3) 2.2094(- 3) 4.8573(- 4) 1. 0276(-4) 2.1732(- 5) 4.6568(- 6) 1.0140(- 6) 
25.0 2.3174(- 2) 8.0612(-3) 2.0946(- 3) 4.7338(- 4) 1. 0160(-4) 2.1628(- 5) 4.6478(- 6) 1. 0132(- 6) 
30.0 2.0211(- 2) 7.3963(- 3) 1.9969(- 3) 4.6226(-4) 1.0050(-4) 2.1528(- 5) 4.6390(- G) 1. 0125(- 6) 
40.0 1.6183(- 2) 6.4003(-3) 1. 8375(- 3) 4.4283(-4) 9.8493(- 5) 2.1338(- 5) 4.6218(- G) 1. 0109(- 6) 
50.0 1. 3550(- 2) 5.3795(- 3) 1.7111(-3) 4.2623(-4) 9.6677(- 5) 2.1160(- 5) 4.6053(- 6) 1. 0094(- G) 
70.0 1. 0289(- 2) 4.6885(- 3) 1. 5194(- 3) 3.9889(- 4) 9.3486(- 5) 2.0831(- 5) 4.5738(- 6) 1.0065(- 6) 

100.0 7.6138(-3) 3.7706(- 3) l. 3197(- 3) 3.6735(- 4) 8.9487(- 5) 2.0393(- 5) 4.5299(- 6) 1.0023(-6) 
150.0 5.3528(- 3) 2.8933(- 3) 1.1036(- 3) 3.2922(- 4) 8.4180(-5) 1. 9767(- 5) 4.4636(- 6) 9.9578(-7) 

2A roo ( 1 [_lIk2 + H(k)]2) 
U!z(r) = 1Tr }o dk ksin(kr) -11- + 1 + 1/k2 _ H(k) , 

H(k) =C(k)/41TA 

Eq. (10), and analysis of their behavior in the A - 00 

limit17 are still left open to further study. As an indica
tion, those complex roots are also plotted on the same 
figure. 

which is just the first step of an iterative process that 
leads to the HNC equation. We note here that the evalu
ation of w2(r) by a contour integral, as was done pre
viously by Del Rio and DeWitt, 3 is one place where an 
exact analytic form of H(k) has a real utility, although 
the complicated Eqs. (10) or (15) are certainly unneces
sary to obtain numerical results for U!z(r). 

When CUe) is replaced by Eq. (22), the equation 

1+1/1?z_H(k)=0 (30) 

yields two purely imaginary roots which coalesce at 
k = Fle = 1. 807i with the corresponding critical A value 
Ae = 7.307. This result I ke I 'C'1, which agrees apparent
ly well with the recent Monte-Carlo data, 16 surely in
validates Eq. (22). In view of estimating how many 
terms we have to retain in power series (27), we 
first solve Eq. (30) by using the full expression (10) for 
C(k). Two purely imaginary roots coalesce this time at 
Ae = 4.247 for ke = 1. 498i. This is in excellent agree
ment with Del Rio-DeWitt's result. 3 Next we approxi
mate H(k), successively, by truncating the infinite power 
series (27) at the order k 6

, k 10
, and kl4, i. e., 

Z (2v+1 ) 

H(V)(k)=A.0 (_)IAlkZl, lJ=1,2, and 3. 
1=0 

Solutions to the equations 1 + 1/k2 
- H(V)(k) = 0 are plotted 

in Fig. 2. As far as the lower part of the l' - A curve 
(1' = - ik) is concerned, H(2 )(k) is apparently satisfactory 
for A < Aco To evaluate a correct Ac value and complex 
roots for A "Ac ' however, H(3)(k) is found to be a good 
approximation of practical use, in that curves of com
plex roots always stem from the coalescent point (Ae, 
ve ). With regards to the upper branches of the v - A 
curve, we realize that the curve (a) obtained from the 
complete expression, Eq. (10), is the only correct re
sults, i. e., an accurate computation of the upper roots 
requires all powers in k 2 of H(k). Evaluation of two 
complex roots for A "Ac with the use of the exact form, 
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All these technicalities serve as the basis for the 
evaluation of the onset of short-range order through the 
appearance of oscillations of the pair correlation function 

" a 8 

FIG. 2. Numerical solutions to the equation 1 + 1/k2 - H(k) ~ 0, 
(a) with the full H(k) , (b) with approximate H(3l(k) , (c) with 
approximate H(2l(k). and (d) with approximate H(1l(k). For 
A> Ae. complex roots obtained with H(2l(k) and H(3l(k) are also 
shown. 
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TABLE II. Comparison of G(r) , Eq. (1), and its asymptotic form, Eq. (24). 

(a) A= 1.0 (b) A= 5.0 (c) A= 10.0 

r Eq. (1) Eq. (24) r Eq. (1) Eq. (24) r Eq. (1) Eq. (24) 

0.5 5.0676 5.2051 0.5 11.131 12.453 0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
6.0 
7.0 
8.0 
9.0 

5.1035(-1) 
6.0080(- 2) 
1. 0535(- 2) 
2.2387(- 3) 
5.3318(-4) 
1.3695(-4) 
3.7113(- 5) 
1.0467(- 5) 
3.0446(- 6) 
9.0759(-7) 

5.0259(- 1) 
6.5741(- 2) 
1.1465(- 2) 
2.2496(- 3) 
4.7080(- 4) 
1. 0264(- 4) 
2.3014(- 5) 
5.2681(- 6) 
1.2250(- 6) 
2.8843(-7) 

1.0 9.9831(- 1) 8.8736(-1) 1.0 2.7040 2.3619 
1.5 2.1909(-1) 2.0170(-1) 1.5 7.1346(-1) 5.9728(-1) 
2.0 5.1292(- 2) 5.1578(- 2) 2.0 1.8498(-1) 1. 6992(-1) 
2.5 1. 2768(- 2) 1.4069(-2) 2.5 4.8458(-2) 5.1564(- 2) 
3.0 3.3494(- 3) 3.9973(- 3) 3.0 1. 3040(- 2) 1.6300(- 2) 
3.5 9.1725(-4) 1. 1682(- 3) 3.5 3.6172(- 3) 5.2996(-3) 
4.0 2.6009(-4) 3.4851(-4) 4.0 1. 0325( - 3) 1.7590(-3) 
4.5 7.5866(- 5) 1. 0562(- 4) 4.5 3.0222(- 4) 5.9309(-4) 
5.0 2.2649(- 5) 3.2412(- 5) 5.0 9.0393(- 5) 2.0247(-4) 
6.0 2.1319(- 6) 3.1399(- 6) 6.0 8.5219(- 6) 2.4278(-5) 
7.0 2.1208(- 7) 3.1287(-7) 7.0 8.4813(-7) 2.9942(- 6) 
8.0 8.0 
9.0 9.0 

10.0 10.0 10.0 

O! = O. 9606, f3 = 2.6818 0!=7.6332, f3=2.1520 0!=16.415, f3=1.9387 

g2(r) around unity, as discussed explicitly for the first 
time. 8 We must emphasize that the critical value Ae 
= 4.225, in accord with the previous Del Rio-DeWitt 
estimate, 3 does correspond only to the pole contributions 
The branch cut contributions from 2i to cx:>i will be con
sidered in a forthcoming work. 

Finally, we check the validity of Eq. (24) by com
paring it with Eq. (1). In contradiction to the asymptotic 
theory of the inverse Fourier transform, Eq. (24) is not 
a bad estimate, even for rather smaller values of r, 
namely, in the region 1 < r < 3, whenever A'S 10. (See 
Table II.) 

D. Large k expansion 

The simplest way of establishing a large k limit is to 
start not from Eq. (10) but directly from Eq. (2). We 
first rewrite this in the form 

F(k) = fo~ drsin(kr)/(r), 

with 

/(1') = rexp(- Ae-r /r) - r +Ae-r• 

Obviously /(r) verifies /(0) =11., /(cx:» = 0, 1'(0) 
= - (1 + A), and /'(cx:» = - O. Also /(r) is continuously dif
ferentiable for any value of r. Therefore, by the second 
mean value theorem, we obtain 

IF(k) 1 </(+ 0) 1 Io'" drsin(kr) I.:: 2A/k. 

Hence, F(k) and G(k) consequently decrease to zero 
as 1 k 1- cx:>. Now by successive integration by parts we 
get 

1 ( 1 1 F(k) =k f(+ 0) - '1?f"(+ 0) + Ji4f4 )(+ 0) + ... 

+ ~2t/C2n)(+ 0) + Rn(k») , 

where 

( )n (<<> 
Rn(k) = k2n Jo dr cos(kr) f2n.1 )(r). 

297 J. Math. Phys., Vol. 18, No.2, February 1977 

Here, as will be shown below, we have set 1"(+ cx:» 
=f3 )(+cx:» ='" =0. The remaining term Rn(k) is bound
ed, since 

1 Io ~ drcos(kr)f2n+1)(r) I 

.:: Io «> drlf2n•1 )(r) 1 = If2n )( + 0) I < cx:>. 

In view of these results we are led to evaluate fn)(r) 
for n? 2. First we have 

/(n)(r) = [r exp(- /l.e-r /r)] (n) _ On,l + (_ )n/l.e-r, 

where on 1 is the Kronecker delta. To evaluate 
[rexp(- Ae-r /r)](n), we recall the formula 

1.1 .Ix) ]) ,.> = ~ ,', • ,. >1 .Ix) (~ (~) 1- .lx)]'-1.IXI'l'") . 

Upon setting q;=exp[l/J(r)] and qJ(1')=_Ae-r/r, we ob
tain after elementary calculations the following 
expression: 

(31) 

where 

t (n)r(n_m)[exp(_ Ae-r /r)](m) 
m=O m 

[ 
n 1 ( e-

r
) / / (Z) (s) n =nl exp(-Ae-r/r) rL-

Z1 
11.- 6 (-)8(-_1)1 

/ =1' r 8=1 s s . 

x.0 s m-. .0- /1._ >' (_)8 n (+ 1) 1 1 n-1 1 ( e-r ) / / (Z) 
m=o(n-m)lml (sr)m+/=1Z1 r ~ s 

(_s)n-1 ~ (s+m-1)1 11 
x £....; -- n?2. 

(s-l)!m=o(n-l-m)lml (sr)m , 
(32) 

We thus observe that f n)( + cx:» = 0 for n? 2 by virtue 
of the exponential factor e-r Jr. On the other hand, we 
obtainfn)(+O) = (_)nA because of exp(-Ae-r/r). It then 
follows that 

(33) 
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Since IRn(k) I <;A/lkI 2n , G(k- oo ) is calculated to give 

G(k) =-F(k) =--.::2 1-~+-;A-' 0 0 + (-) -;:Tn 
411 411A ( lIn 1 ) 
k k k k k n 

411A ( (_ )n+1 ) 
= 1+l?"" \ 1 - pr;;+r) . (34) 

Thus when the integration by parts procedure is re
peated sufficiently many times (n - 00), one can let the 
remainder be as small as possible. We finally obtain 
the Debye limit 

G(k) k~~ 411A/(1 + k2), (35) 

which is the obvious limit of Eq. (1) for small r. 

Let us remark here that the large k limit is equivalent 
to the small QI limit of G(k) which has already been dis
cussed in Sec. IIIB, since, in Eqo (10), k enters in the 
infinite sum through en only. To prove this, we may use 
an asymptotic formula, due to Titchmarsh, 18 of the 
Fourier sine and cosine transform Fs(k) and Fc(k) which 
is valid under rather restricted conditions. Let x(r) 
= r"" z/J(r) where 0 < QI < 1 and z/J(r) is of bounded variation 
in the interval (0,00). Then 

(36) 

-z/J(+O)r(l- QI)cosC2Q1) k",-l, Ikl- oo • (37) 

Fc(k) is obtained with cos(11Q1/2) replaced by sin(11Q1/2). 
We apply this to Eq. (4) and examine the asymptotic 
limit of the integral fo~ dr r s+1 sin(kr) exp(sr) , with Res 
< - 1. Setting QI = - (s + 1) in Eq. (37), we find 

lim (~drrS+1 sin(kr) exp(sr) ~ - r(s + 2)k-(s+Z) sin(11
2
S) 

Ikl- ~ Jo 
(38) 

with - 2 < Res < - 1, which just corresponds to the 
Mellin contour. The remaining procedure to obtain 
G(k) for large k is similar to that given in Sec. 1. The 
result is 

G(k) ~ - ~: 2~i idS .('(S)l'(S + 2)(kA)-Ssin (~S) 
417 ;., (kA)/+z [ 

=-,;-~['(Z + 1)£(/ + 3) - [z/J(1 + 1) + </J(1 + 3) 

-In(kA)]sinC;)+~cos(,;) l 
which is Eq. (19). The large k limit of G(k) is thus 
Bowers-Salpeter's expression, Eq. (20), which reads 
in the asymptotic limit 

G(k) - ~i' [1 - rrr exp~17f 14) cos (2fli + ~11) 1, 
b=kA. (39) 

Although the correction term is quite different from 
that given by Eq. (34), the dominant term in two ex
pressions is just the Fourier transform of the bare 
Coulomb potential. 

IV. CONCLUDING REMARKS 

With regards to the onset of shortrange order for 
gz(rJ, qualitative and physically meaningful results3 ,8 
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have already been obtained by the method of residues 
which takes into account only those poles closest to the 
real axis of the complex k plane. Nonetheless, a more 
quantitative analysis, which also includes the contribu
tion to gz(r) of all other poles located farther as well as 
the branch cut lying on the imaginary axis 2i < k < i oo , 

is still required in order to definitely settle this prob
lem. This will be undertaken in a forthcoming work. 
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APPENDIX A: PROOF OF THE EOUIVALENCE OF 
EO. (15) AND EO. (10) 

For the most general proof we start from the 
expression 

( 2mIZ.( ;"(_)/2/+1 111! 
1 +x ) sm marctanx) =1-:0 (21 + l)!x (m _ 21- I)!' 

(AI) 

It is readily seen that, for a given m, the infinite sum 
over 1 is automatically trucated when m <; 21 by virtue 
of the relation 

First, setting m = n - 2, n::" 3, and x = kA/an in Eq. 
(AI), we get 

£, (_)1 (kA) 21+1 1 
1=0(21+1)! an r(n-21-2) 

I sin[ (n - 2) en] 
=r(n -1) cosn-2(en) 

(A2) 

Next, differentiating (A 1) with respect to x and then 
setting m = n - 2, n? 3, and x = kA / an in the resulting 
expression, we obtain 

;., (_)1 (kA)2/+1 21 + 1 1 
??o (21 + I)! -em -n- r(n - 21-1) 

n-2 1 sin(en)cos«(n-3)en) 
n r(n - 1) cosn-2(en) 

Finally we shall prove the identity 

~ (_)1 (kA)21+1 z/J(n - 21- 2) 
f?o (21 + I)! an r(n - 21- 2) 

=r(n- 1) ~osn-2(Bn) [(z/J(n -1) + In[cos(enll 

+ n: 2 Sin2(en») sin«n _ 2) en) _ (en _ n;; 2 sin(en)cos(en») 

Xcos«n- 2)Bn} + n: 2 sin(en) cos«(n- 3)Bn) l (A3) 

Proof; Differentiate Eq. (A2) with respect to n, by 
using the relation 

d 1 d 1 \ </J(n - 1) 
dn r(n - 1) - dz r(z - 1) e=n = - r(n - 1) . 

We then obtain 
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t (_)1 (kA)2/+11jJ(n_2l_2) 
-1=0(2l+1)1 an r(n-2l-2) 

d { 1 sin«z - 2)e~)} \' 
= dz r(z - 1) COS~-2( e~) ~"" 

kA n - 2 1 cost en) cos«n - 3) en) 
+ an -n- r(n -1) cosn-2(e,,) 

Evaluation of the first term then yields Eq. (A3). 
Q.E.D. 

Collecting the results obtained, we get 

'£ (_)1 (M)21+1 1 
1=0(2l+1)1 an r(n-2l-2) 

( 
n - 2 21 + 1 ) x In(an) + -n- - -n - - ljJ(n + 1) - ljJ(n - 2l - 2) 

= r(n _ 1) c~sn-2(en) {[In( co:7e
n
») -1jJ(n + 1) 

_ ljJ(n - 1) ]sin«n - 2) en) + n: 2 cos2
( en) 

x sin«n - 2) en) + en cos«n - 2) en) 

n-2 } --n-Sin(en) costen) cos«n- 2) en) • 

Combination of the second and fourth terms by tri-
gonometric algebra recovers Eq. (10). Q. E. D. 

The above derivation does not apply for n = 2. The 
n = 2 term in Eq. (15) can be correctly evaluated when 
we recall the relation 

11
' I/J(z) _ ( )m+l 1 
m r( )- - m., 

I!- ... m Z 

Then the n = 2 term reads 

1 ~()' (k/2Q!)2hl ( )21+2( 
r(3) to - (21 + I)! - 21)! 

1 ~ I (k/2Q!)2/+1 1 ( k ) 
=2TE(-) 21 + 1 =2Tarctan 2Q! • 

Thus, when Q!= 1, we obtain 

47TA2[ 1 (k) ~ I (kA)21+1 
G(k) =-k- 2! arctan "2 + E(-) (21 + 1)1 

~ (An)n-21-3 ( n - 21- 3 xE r(n + 1).('(n _ 21- 3) In(An) + n 

- I/J(n + 1) - I/J(n - 2l - 2») ] . (A4) 

APPENDIX B; LARGE A LIMITS OF .II, (A) 

After integrating Eq. (28) by parts once, we can write 
A,(A) as 

A,(A) =i (1- (21 +1)~ (21 +3) 

x i~ drr' +
1 (1 +r) exp(- r_Ae-r /r»). (Bl) 

Now, in order to evaluate large A limits ofA,(A), let 
us consider the integral 

299 

la(A) = r ~ drr" exp(- r- Ae-r /r). 
, 0 
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(B2) 

Introducing a new variable r=N/2u , l",(A) becomes 

lOl(A)=A(a+1)/21a~ duexp[-N/2h(u)], 

where h(u) = u + (l/u) exp(- ..f7\. u) - (ai..f7\.) Inu. Denote by 
u~ a solution of h'(u) = O. Then, dividing the integration 
range into two subintervals [0, u~] and [U~, 00], we can 
apply the Laplace approximation to each of the two in
tegrals, since exp[ - JA h(u)] has a sharp maximum at 
u = U~. The result is 

where x", = i7i. u~, Z", = [(1 + Q!)x", /(1 + x",) + (x", - Q!) 
X(I+X,,)]1(2/J2 and CP",=[Q!-x",(2+x,,)]/(1+x,,). 

Then 

(B3) 

AI(A) A:~i (1-~ (21 + 1)!\21 + 3)}U21+1(A) +121+2(A)] 

(B4) 

Accuracy of the above expression depends crucially on 
a value of x" which we could obtain from the recurrence 
relation (x" := lim n- ..,xn) 

x n= In(~ x n_1 + 1), 
X n_1 x n_1 - Q! 

valid when i7i.» Q!. In this case a starting test value 
Xo = In(A/lnA) ensures a rapid convergence of iteration. 

Finally, in order to corroborate Eq. (B3), the use of 
the Laplace approximation must be justified. To this 
end, consider the integral Jo~drr" exp(-r-A/r) which 
may be considered as a loose bound of l,,(A), since 
Ae-r /r < A/r. With the aid of the identity 

l
~ 4A 
drexp(-[3r-A!r)=-K1 (z), Re[3> 0, ReA~ 0, 

o z 
(B5) 

where K1 (z) is the modified Bessel function of order 1 
and z = 2([3A)1 /2, we obtain 

( ~ drr" exp(- r _ Air) = (_)" 4A [ a:" (Kl (Z»)] . Jo al-' Z B=l 

USing then the formula for the derivative 

= (- 2A)'" K,,+1 (2~ A)/(2i7i.)'" +1, 

we have 

Then in the limit A - 00 with fixed Q!, the asymptotic 
expansion for a large argument of K" +1 (2Vl\) is in order 
and yields 

i ~ dr r" exp(- r - Air} A::.. ~.f1f A (a +1) /2 exp(- 2-iA.}, 

(B7) 
a result which we can recover by using the Laplace 
apprOXimation. 

To finish it seems interesting to give below some 
properties of la (A): (1) 1", (A) obeys the recurrence 
relation 
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(1+ a~l :>.)IOI (A)=a!l (l-A:A)I,,+I(A), 

A= l/A; (B8) 

(2) When Io(A) is known, I,,(A) is a solution to the differ
ential equation 

1 ( 0 )" a! 1- Aax I,,(A) 

= (1 +~~) ... (1 +~~)(1 + A~)Io(A) (B9) 
(lIOA 20A OA ' 

which is not yet solved. 
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A classical Markov process in nonequilibrium quantum 
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We obtain, from the exact microscopic, reversible, dynamics of an oscillator coupled to a heat bath, a 
classical, Markov stochastic process, for the energy of the oscillator. Also, the corresponding macroscopic 
phenomenological equation, describing an irreversible approach to equilibrium, is obtained. 

1. INTRODUCTION 

A central problem in nonequilibrium statistical me
chanics is to explain how a large assembly of particles, 
whose microscopic laws of motion are reversible, can 
generally admit a contracted description in which a rel
atively small number of macroscopic variables evolves 
according to some self-contained, irreversible pheno
menological laws (e. g., hydrodynamics, heat conduc
tion).l,2 

In Refs. 1 and 2, it was proposed that such laws may 
be extracted from the microscopic equations of motion 
by means of a two-stage program. The first stage cor
responded to the derivation of a classical, Pauli, master 
equation for the macroscopic variables; and the second 
stage, to the derivation, from the master equation, of 
phenomenological equations of motion. 

The object of the present paper is to carry out a sim
ilar program in a rigorous way for a particular solvable 
model. This is the model of Ref. 3, consisting of an 
oscillator coupled to an infinite heat bath: Models of this 
type have been treated elsewhere with different purposes 
(see, e. g., Refs. 4-7). For the macroscopic variable, 
we consider the energy of the oscillator. Our main re
sult is that this variable evolves according to a law 
which, in a certain well-defined limit, corresponds to 
a claSSical Markov process. 8,9 

In Sec. 2, we describe the model and certain of its 
properties, then we consider the existence of the Van 
Hove limit for the time correlation functions of the en
ergy of the oscillator corresponding to a KMS state10 ,l1 of 
the composite system (Sec. 3). Through these time cor
relation functions, we obtain the classical Markov pro
cess, with specified diffusion equation, obeyed by the 
energy variable of the oscillator (Sec. 4). Finally, (Sec. 
5), the corresponding phenomenological equation is ob
tained from the diffusion equation. 

Throughout this article, we shall use the following 
notations. The standard symbols Z., R, R., and C will 
be used to denote the positive integers, the real line, 
the positive reals, and the complex numbers respec
tively. z will denote the complex conjugate of Z E C. If 
H is a Hilbert space, we shall denote by (', . )H' the cor
responding inner product (linear in the second variable). 
The Fourier transform of a functionf on R will be de
noted by j, with the convention that (cf. Ref. 3) 

j(x) == (21T)-1I2 f.:dyf(Y) exp(- ixy) 'd x E R. 

Finally, we shall use n== 1. 
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2. THE MODEL 

In this section we set up the model, which is a slightly 
different (less general) version of the one considered in 
Ref. 3, together with some of its consequences, most 
of them worked out in Ref. 3. 

Let H be a complex Hilbert space, and T a strongly
continuous unitary representation of R in H, whose in
finitesimal generator is ih. 

We render A (H), the set of all complex-valued func
tions on H with finite point support into a * algebra by 
equipping it with an involution A -A* and a binary multi
plication (A, B) -AB, according to the formulas 

(2.1) 

and 

(AB)(j) == .0 A (g)B(f - g) exp(ilm(f, g)H) 'dIE H. (2.2) 
cEH 

The set J of all faithful Hilbert space representations 
of A (H) is nonvoid, and the map A - IIA II = SUP.E J 1I1T(A) II 
ofA(H) into R, is a C*-norm onA (H). 12 The C*-algebra 
of the CCR over H is the completionA(H) ofA(H) with 
respect to thi::, norm. If, for each IE H, we define Of 
EA (H) by the formula 

Df(g) == {1 for 1== g, 

o for Ii-g, 
(2.3) 

thenA(H) is the norm-closed linear span of {ofI/EH} 
and DO is the unit element ofA(H). 

Let S(H) be the set of all states onA (H). The charac
teristic functional r: H - C, corresponding to the state 
W is defined by 

r(j)==w(Oj) 'd/EH. (2.4) 

Let T T : R - AutJ[(H) be defined by the formula 

(TT(t)A)(j)==A(T(-t)j), 'dAEA(H), fEH, tER. (2.5) 

The automorphisms T T(R), induced by the transforma
tion T(R) of H, represent a quasilree evolution ofA(H), 
(cf. Ref. 13). 

Let 'L(H, T) be the triple (i!(H) , S(H), TTl. We consider 
this triple to represent a physical system, whose dyna
mical variables, states, and dynamics correspond to 
the self-adjoint elements of A(H) , S(H) , and TT(R), re
spectively. We call such a system a quasilree system .. 

Definition 2.1: We define I to be the class of all quasi
free systems 'L(Hl, T1) for which: 

(i) The one-particle Hamiltonian h is a lower semi-
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bounded operator in HI, h"" m[n1, where mER., and 
h1/Z is invertible. Further, HI lies in the domain of 
h-1/2 . 

(ii) If we define F: HI x R - C by the formula 

F(f, t) = (/1, Tl(l)fl)Hl '<I fl E Hi, t E R, (2.6) 

then for each fl E HI, F(tl, ( .) is the inverse Fourier 
transform of a bounded, continuous, L 1-class function 
F(t\ ( .) on R, which satisfies a Lipschitz condition 

It(t\ x +y) - F(tl, y) I"" A lxlfi 
'<Ix,YER, with 0<0<1, 

where A, ° are constants. 

(2.7) 

Definition 2.2: We define IT to be the class of quasi
free systems "i(HZ, T2) such that H2 = C, T2 is given by 
the formula 

T2(t)Z = z exp(ix of) '<I t E R, Z E C, 

where Xo is a positive constant, and where 

(z,z')c=zz' '<Iz,z'EC. 

(2.8) 

(2.9) 

Let L;1 '" "i(H1, Tl) and L;2", "i(H2, T2) be quasifree systems 
of class 1 and 11, respectively. 

Definition 2.3: We define "i= "i(H, T A) to be the quasi
free system obtained by compounding "i1 with "i2 as 
follows: 

(i) The Hilbert space H is the one obtained through the 
direct sum HI EI:l C, with inner product 

(ti Efizl.!~Ef, Z2)H = (fi,J~)Hl + Z1 Z2 

(2.10) 

(ii) T). is defined as the strongly-continuous unitary 
representation of R in H, whose infinitesimal generator, 
ih)., is given by the formula 

h).=ho+>-"v, ho=hiJJxo, 

where 

(2.11) 

v(tl iJJ z) = z.i iJJ (g!,fl )n1 '<I fl E HI, Z E C, (2. 12) 

.i is a fixed element of HI and A a real positive constant. 

(iii) Since we know 3 that for each fl E H\ F(tl, ( . ) 
is a real valued, nonnegative function on R, we will as
sume that 

(2.13) 

(iv) We assume that >-.. E (0, >-"0), where AO is the positive 
real number referred to in Lemma 6.1, (ii) of Ref. 3. 

(v) If we call mv the lower bound of the operator v, 
then we assume that 

(2.14) 

where m is defined in (i) of Definition 2. 1. 

This model is solvable, and if we define 

f(t) = T).(f)(OEl:l1) fER, (2.15) 

we can define u). and k). to be the maps of R. U {o} into C 
and HI respectively, given by the formula 

t ER.U {o}. (2.16) 
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Then, 3 

'<I tE R., 

where 

v).(t) = expi[xo + i>-..2(7T /2)1I2J(.i, xo)]t V t E R., 

and 

_>-..2 f~ 
w)'U) =prn) dx exp(- ixf)[J(.i, Xo) - J(.i, x) 1 

811' _'" 

X{[x - Xo - i>-..2(7T /2)1/2J(.i, x o) 1 

(2.17) 

(2.18) 

x[x-X O-i>-..2(11'/2)1I2J(.i,x)l}-1 '<ItER., (2.19) 

where 

J(.i, x) = Fc.i, x) + iG(.i, x) '<I x E R, (2.20) 

G(.i, ( .)) being a real valued, bounded, continuous func
tion on R. Also 

(2.21) 

where 13 is a constant, and ° is the same as the one in 
Eq. (2.7). 

Now, the characteristic functional r corresponding to 
a primary KMS state w (w is unique except for a gauge 
transformation of the second kind13), which character
izes the equilibrium state of ~ at the inverse tempera
ture 13, can be taken as 

'<IfEH. (2.22) 

Let !fI, 7T, 0) be the GNS triple14 ,15 induced by this initial 
state w of ~, and R(f) be the self-adjoint field operator 
corresponding to the Weyl operator 1T( Of) = exp(iR(f). 
Then12 ,13 

r(f)= (0, exp(iR(f))O)H "'<exp(iR(f) '<IfEH. (2.23) 

We can define '<I fE H, the annihilation and creation 
operators13 by 

a(f) = HR(f) + iR(ij)], a(f)* = HR(f) - iR(ij)] 

which have the following commutation relations: 

[a(tl), a(t2)] = 0 

and 

(2.24) 

(2.25) 

USing Eqs. (2.22)-(2.25) and the invariance under 
gauge transformations of the first kind, 13 we can easily 
deduce that '<Ifl' .• . .!n E H, and '<In E Z. 

(2.26) 

and 

(a(tl)* ... a(tn)*a(tl) ... a(tn) = i (a(f;l*a(t) i, (2.27) 

where the rhs stands for the permanent16 of the nXn 
matrix [(a(fj)*a(fj»1. 

Since,3 '<If=fffJZ EH, 11'(0,)=11'1(0,1)0 11'2(0~), it follows 
that 

a(f) = a1(tl)0 f + [10 b(z), 

a(f)* = a1(tl)*0 f + /10 b(z)*, 
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annihilation and creation operators of l;l and l;2, 

respectively. 

If we take, at time t= 0, f(O) = OEB1 (EH), then 

xoa(f(O»*a(f(O» =N;:; xob*b =[le; E(O), (2.29) 

where E(O) is the energy operator of l;2 at t = 0, whose 
time evolution, 'tI t E R, E(t), is given because of the 
quasifree evolution, by f(t). 

3. THE TIME CORRELATION FUNCTIONS 

Definition 3.1: We call, 'tI tl , ••• , tn E R, and 'fin E Z., 
(E(tl) ••. E(tn» the time correlation functions for the en
ergy of .0 2

, for the equilibrium state given by Eq. (2.22). 

We are now interested in the existence of the Van 
Have limit (weak coupling limit), i. e., >..2t = T, A - 0., 

t - 00, T, fixed, for these time correlation functions. 
For that, we consider first the Van Hove limit of Eq. 
(2.27), for fk =f(tk), tkER, k=l,.o.,n. 

Because of Eqso (2.11), (2.14), and the Rellich the
orem (see Ref. 17, p. 1263), we obtain that 

s- lim coth(tf3hx)f(O) = coth(tf3ho)f(O) 

= 0 EB coth(tf3xo)' (3.1) 

Using Eqs. (2.10), (2.16), and (3.1), it follows that 
'tiTER., 

(3.2) 

and 

(3.3) 

Because of Eqs. (2.13), (2.20), and (2.21), we obtain 
through Eq. (2. 19) that 'fiT E R., 

lim WI..(T /,\2) = 0, (3.4) 
1..-0. 

uniformly w. r. t. T. 

Using Eqs. (2.17), (2.18), (2.20), (2. 26), (2. 27), (3.2)
(3.4), and the unitarity of T A, it follows that 

where 

a(xo) = (1T/2)1I2i(g\ xo), (> 0). (3.6) 

Now, with Eqs. (2.17), (2. 18), (2.20), (2.25), (2.29), 
and (3.3)-(3.5), we can obtain the time correlation 
functions for the energy in the Van Hove limit, which 
we will denote by (E"'1" ·E,,). However, such expres
sions are not invariant under the permutations of the in
dices of the T's. 1n order to achieve such invariance, 
we can proceed in two different ways. 

(i) Taking the Wick normal products for the energies 
(cf. Ref. 6), in which case the mean value of the energy 
of L;2 in the equilibrium state is given by 
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(3.7) 

We notice that this is a rather formal procedure. 

(ii) Taking the classical limit, x of3 - 0., in which case 
(E) =W1. 

With both procedures, we obtain that 

(ET1 '" ETn) = i vi 'tI T1> ••• , Tn E R, 'tin E: Z., (3.8) 

where 

(a> 0), (3.9) 

and where a and (E) are given by a(xo) and Eq. (3.7) 
or by a(O) and /3-1, depending on whether we choose the 
point of view (i), or (til, respectively [also if procedure 
(i) is the one chosen, (E'1'" Ern> really stands for 
(:E1'1" .ETn :)]· 

The Van Have limit, as well as the classical one, 
xof3 - 0. exists uniformly w. r. t. the T's. 

4. THE STOCHASTIC PROCESS 

For arbitrary, but fixed T1 , ••• , Tn E: R, n E: Z., we 
are faced through Eq. (3.8) with a moment-problem. 18 

That is, we want to know if there is a unique character-
istic function CPT ••• T (Xl' ••• , X n), Xl, ••• , XnE: R, which l' t n 
reproduces these time correlation functions. 

Now, we consider 

CPTl "'T (x1 ,.·.,Xn)=1/\I-iVD\, D=[OijXi), • • n 
(4. 1) 

which is the characteristic function corresponding to an 
n-dimensional gamma-type distribution. 19.20 This dis
tribution can be obtained as the one corresponding to 
one-half the sum of squares of two independent n-dimen
sional Gaussian vectors (XT1 ; ••• ; XT), (YT1 ; ••• ; Y,,) 
with zero mean values and the same covariance matrix 
V. 19 •20 

That this distribution reproduces the time correlation 
functions of Eqo (3.8), can be seen in the usual way 
through Eqo (4.1) or by considering the moments of the 
2n-dimensional Gaussian vector (1/v'2)(XT1 + /31 YT1 ; 

.•.. X~ + f32nY" ), where f31, •• " f3 211 E C, and then taking "2n 2n 
131 = i for 1 = 1, ... , nand I3 j = - i for j = n + 1, ... , 2n. 

If['it ... ·.jn=<e;.~· .. E;;:> 'tIjl, ... ,j"EZ.U{O}, T1,"" 
Tn E: R, n E: Z., and 

Azn = r 2n. 0,0,''',0 + r 0,2n,0. 00',0 

+ ... + r 0.0,0 ..... 2"' 

it follows that the series 

(4.2) 

(4.3) 

diverges (comparing it with the harmonic series). 
Then, lS the uniqueness of the characteristic function is 
asserted. 

Then, because of Kolmogorov's fundamental theorem, 
the family of time correlation functions [Eq. (3.8)1, 
gives us a stochastic process {E,,; T E: R} with state space 
R., and with 

(4.4) 
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where {XT ; T E R} and {YT ; T E R} are two independent 
stationary Ornstein- Uhlembeck velocity processes 
(colored noises) with zero mean value and the same co
variance matrix V. 

This energy process which, unlike a Gaussian one, 
is not specified by its mean value (E) and covariance 
matrix [(E)2 exp(- 2 C\' I T i - T j I )], 20 is continuous, station
ary both in the strict and in the wide senses. 21 It is 
Markovian in the strict sense, 22 and also in the wide 
sense. Moreover, 23 It is a homogeneous diffusion pro
cess whose Fokker-Plank equation26 for the transition 
probability density, P ==p(T, Eo, E), is given by 

This singular, parabolic, differential equation has a 
unique fundamental solution,25 normalized V Eo, T E R., 
which is given by4,23,26 

1 [2,) EoE exp(- O'T) J 
p(T, Eo, E) == (£)(1- exp(- 20'T» 10 (E)(1- exp(- 20'T» 

[ 
E + Eo exp(- 20'T) ] 

x exp - -;-( E=)'( 1:-"---e""':xp'-'-(;---:2""'0'-T""'"') ) 

(4.6) 

where 10 is the modified Bessel function of zero order. 

We have thaf3 

_ . exp(- E/(E» 
Peq ~ ~l.r:!P(T, Eo, E) = (E) V E, Eo E R., (4.7) 

as one might anticipate. 

The irreversibility of the process can be character
ized through the monotonic increasing entropy,l given 
by 

( E) f ~ ( ) p(T, Eo, E) 
S T, ° == - dE P T, Eo, E log'-'---'---"'---'-

o PM 

The contracted nature of the description1,2 of the sto
chastic process for the energy variable that we have 
just formulated becomes particularly manifest when one 
notes that the Van Hove limit for the time correlation 
functions for the position and momentum operators of 
£2 do not exist. 

5. THE PHENOMENOLOGICAL EQUATION 

Using Eq. (4.6) and Eqs. (9.6.3), (11.4.28), (13.4.1), 
and (13.6.12) of Ref. 27, we obtain, for the conditional 
mean value [(ET I Eo), for the energy of .02 at time 
7 (7ER.), that [cf. Ref. 4] 

{(ET 1 ED) == (Eo - (E» exp(- 20'7) + (E) 

(5.1) 

This conditional mean value is the unique continuous so
lution of the differential equation 
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d[ (~~I Eo) + 2a[ (ET I Eo) == 20'(E), 

with [(Eol Eo) = Eo E R •. (5.2) 

With the same set of equations as above, we find that 
the relative width R(7, Eo), is given by 

(5.3) 

From Eq. (5.3), it follows that if C (ET lEu) > (E), 
then 

which tells us that the fluctuations of the energy vari
able remain sufficiently small so that we may consider 
Eq. (5.2) as a phenomenological one, describing an ir
reversible approach to equilibrium. 1,2 
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Exact diagonalization of relativistic Hamiltonians including a 
constant magnetic field 

D. L. Weaver 

Department of Physics, Tufts University, Medford, Massachusetts 
(Received 8 March 1976) 

It is shown how to exactly diagonalize the Dirac and Sakata-Taketani Hamiltonians, induding the effect 
of a constant, external magnetic field, using a unitary transformation. In the latter case, the magnetic 
moment coupling must be of the Yang-Mills type in order to perform the transformation. 

1. INTRODUCTION AND SPIN % 

One of the interesting features of the Dirac equation 
(n=c=l), 

(1 ) 

for a spin-~ particle of charge q, mass JIl, and anoma
lous magnetic moment factor K, moving in a constant 
external magnetic field B = (0, 0, B), so that A 
= (- iBy, iBx, 0) and 7T~ = p~ - qA!, is that the exact en
ergy eigenvalues E may be obtained directly from Eq. 
(1) by a unitary transformation, to a diagonal form. 
The diagonalization can be seen as two steps. The first 
step, as noted by Tsai, j is 

UjH DUjl ={ [m 2 + (0' '1T~)2]1 12 - q4~: 0'3}i3 + a3P3, (2) 

where 

(3) 

and 0' is a representation of the Pauli spin matrices. It 
is interesting that U j is the generalization of the Melosh 
transformation2 to include some external field effects, 
that Uj commutes with the anomalous magnetic moment 
interaction, and that if P3 = 0, a possibility since it is a 
constant of the 11l0tion for this problem, Eq. (2) is man
ifestly diagonal. In the p", 0 case, one may still obtain 
a diagonal Hamiltonian by a further unitary transforma
tion with the result 

U2UjHDUiIU"21 

(4) 

where 

U2 = exp 1.13a tan-1 ( P a \ 
2 3 [m2+(0"1TJ2]1/2_(qKB/4m)a3j' 

(5) 

The main purpose of this paper is to look at a Hamil
tonian form of spin-1 theory with a six-component wave
function, the Sakata-Taketani theory, 3 under conditions 
similar to the above in the spin one-1 case, and to find 
the unitary transformation that exactly diagonalizes the 
Hamiltonian. It turns out that exact diagonalization is 
only possible for K = 1, in which case the energy eigen
values take a particularly simple form, equivalent to 
the spin-i theory with K = O. The choice K = 1 for a 
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charged vector particle (to lowest order in the fine 
structure constant) is the value appropriate to Yang
Mills type coupling,4 and, in fact, as emphasized by 
Lee,5 such a choice should not even be regarded as 
anomalous. 

2. SPIN ONE 

Corresponding to Eq. (1), the Sakata-Taketani equa
tion for the six-component wavefunction 1/JsT is 

(6) 

The matrices pj,2,3 have the algebra of the Pauli spin 
matrices, and S are a representation of spin-1 matrices. 
Equation (6) may be written in a more convenient way 
as follows. Defining a'" 1T1 - 2qBS3, one has 

(7) 

This is useful because a commutes with S3 and (6 ·1T1)2. 

The next step is to expand (6, 7T 1)2 according to 

(6 • 1T 1)2 = M 61 (1T1- 1T~) + 62 (7T 17T 2 + 7T27T 1) 1 
+ ~qBS3 + (i - SVa) a, 

where 

61",si-s~, 62 "'S15 2 +5251, 

Letting 63 be S3' the 6j have the algebra6 

616 j = 01 j S~ + iEiJk 6 k' 

the same as the Pauli matrix algebra (there (! ~ = 1 so 
O'IO'J= ojJO'~ +iE/JkO'k)' 

(8) 

(9 ) 

(10) 

With this form for (6' 7T~)2, one sees that there are 
two kinds of anticommutation relations involved in H ST , 

those among the PI and those among the 6/, and in some 
of the terms in HST both kinds occur. To unitarily 
transform HST to a form that is exactly diagonal, HST 

must be composed only of two terms that anticommute 
with one another plus terms that are already diagonal 
and commute with the unitary transformation. Examin
ing Eqs. (7) and (8), this is only possible for K = 1. In 
this special case, the Hamiltonian simplifies to 
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HST == (m + 2~ )P3 +( 2~ (5~ - 1) - 2~[bl(nt-~) 
+ b2(1T11T2 + 1T21T() + qBS3J)iP2' ell) 

It is convenient for later results to consider the diag
onalization as taking place in two steps. The first step 
is 

(12) 
where 

b. '" bl (1T~ - 1TD + ~2 (1T(1T2 + 1T21Tl) and b; =5Ha2 - q2B2). 

The operator U has the form 

U == exp(53b.lI/2N), (13) 

where N == (- 53 by and tanll ==N/(qB). The second step 
is to diagonalize the PI dependence. The result is 

H~'.r = VH~T V-I 

= [~+ 2~ r -( 2~ (55 - 1) - 2~ (b; +q2B2)1/25~T/2 P3 

=(m2 + a)1I2p3' 

where 

with 

(14) 

(15) 

(16) 

and V is unitary in the Sakata- Taketani metric, V P3 vt 
= 1. As mentioned before, the form (m 2 + 1Ti - 2qB53) I 12 
is the same eigenvalue for spin t as well, when K = O. 

The possibility of the exact diagonalization of Eq. (6) 
only for the special case K = 1 and the similarity of the 
eigenvalues in that case with the spin - i result for K 

== 0, may be considered further circumstantial evidence 
on the electromagnetic properties of the vector bosons 
which are thought to mediate the weak interactions. 7 

DISCUSSION 

It has been shown that the special case K = 1 leads to 
a simplification of the Sakata-Taketani Hamiltonian. In 
particular, it allows HST to be diagonalized by a unitary 
transformation, and the resulting energy eigenvalues 
have the same form (m 2 + 1Ti - 2qBS3)1/2 as the Dirac 
energy eigenvalues (K = 0). The nonrelativistic limit 
is, of course, m + a/2m, and it is worth noting that the 
magnetic moment q/m, found from this approach does 
not agree with the "minimal" modification of the 
Schrodinger Hamiltonian p2/2m, in contrast to the 

307 J. Math. Phys., Vol. 18, No.2, February 1977 

spin-i case. Recall that for spin i, one can make the 
following modification: 

(17) 

For spin 1 [in the representation with (51)Jk=- i€/ik] the 
argument goes as follows: 

P'- ~}p"P"P'1 + (/! ·pf 

-[;:}.,, '" .,J + IS •• )' ~.' - qS .B, (18) 

where the two terms are the helicity squared eO and 1) 
projection operators, so that a completely nonrelativis
tic argument gives q/2m for the magnetic moment of the 
spin-l particle. 

It is, of course, possible to find the exact eigenvalues 
of Eq. (6), even when K *- 1. In that case, one first re
duces the wave equation to three-component form, 
defining I/Ju to be the upper three-components of I/JST' The 
result in the representation with P3 == (~ ~) and iP2 = U D 
is 

[m2 + a + (1 - K) ~:~2 5~ + (1 - K)qB (1 + ~ )53 
+ (1 - K)~(ba( 1T~ - 1T~) - bl (1T11T2 + 1T21TI)] ]I/Ju == EI/Ju, 

where Eq. (10) has been used to simplify products. 
Applying a similarity transformation to the terms linear 
in bl leads to the exact eigenvalues6 

q2B2 
E2==m 2 +a + (1- K) 2m 2 5~ + (1- K)qBS3 

X 1 + - _ 52. [( 
a.)2 (a

2 
_ q2B2)2 ]112 

2m 2m 2 3, 

the same ones as for the Proca theory. 8 
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Stochastic mechanics and dissipative forces 
Bo-Sture K. Skagerstam 

Institute of Theoretical Physics, Fock, S-402 20 Giiteborg 5, Sweden 
(Received I December 1975, revised manuscript received 14 April 1976) 

We analyze a simple velocity dependent potential in the framework of stochastic mechanics. A nonlinear 
Schrodinger-Langevin equation is obtained. This equation turns out to have solutions with the remarkable 
property of giving an approach to stationary quantum states. Information theoretical aspects on the 
irreversible behavior of the model is also briefly discussed. 

I. INTRODUCTION 

It has been suggested1,2 that stochastic mechanics, 
as developed in Refs. 1-5, in the case of disSipative 
forces can give us some understanding of how one 
should treat, in terms of quantum dynamics, forces 
which explicitly depend on velocities. In the theory of 
nuclear phenomena the dissipation of energy (or what 
can also be called nuclear friction) is not a very well 
understood topic and certainly there is a need for a 
theory corresponding to "quantized friction. "S, 7 

In the present work we will use the machinery of 
stochastic mechanics in order to analyze the dynamics 
of a simple velocity dependent potential. Classically 
our model corresponds to a damped harmonic oscilla
tor. Upon quantization in terms of stochastic processes 
we will arrive at a nonlinear dynamical equation, the 
Kostin equation. 8,9 Solutions in closed form will be 
given. These solutions will have the remarkable prop
erty of approaching stationary states of the harmonic 
oscillator for large times. Thus our model will exhibit 
an approach to equilibrium (to a stationary quantum 
state). 

The formal setting is very Simple and all calculations 
will be performed in the next section. In the last sec
tion we will give some general remarks and point to 
some information theoretical aspects concerning the 
irreversible behavior of the model. 

We do not claim mathematical rigor and regard our 
discussion as heuristic. Some of the mathematical 
aspects have recently been discussed by Messer10 and 
we intend to discuss our model in terms of the Weyl 
quantization in a future publication. 

II. STOCHASTIC MECHANICS WITH DISSIPATIVE 
FORCES 

In stochastic mechanics one assumes that the position 
x (t) of a particle under consideration can be regarded as 
a stochastic process. The "quantization" is prescribed 
by giving the correlation function 

E(dx(t) dx(t) = 2Ddt 

with 

D=n/2m 

(1) 

(2) 

and where E(· ) denotes a (conditional) expectation val
ue. 1 Higher order moments vanish by definition. The 
particle then performs a Markov process of the Wiener 
type. 1 Now suppose that there is a classical time-

308 Journal of Mathematical Physics, Vol. 18, No.2, February 1977 

reversible conservative force j acting on the particle 
(we consider one-dimensional problems only). We can 
then write 

a 
j=- axcfi(x), 

where cfi(x) is the corresponding potential. General 
dynamical equations 3,4 can then be derived for the 
stochastic process in terms of current velocity v (x, t) 
and the stochastic velocity u(x, t), 11 

and 

[av (av j=m -v+ -v-at ax 

au + D a2v + avu = 0 
at ax2 ax ' 

(3) 

(4) 

(5) 

where m is the mass of the particle. If we now introduce 
the complex function 

dor ) [S(x, t~\ 
~(x, t) = exp(R(x, t) exp ~ 2mDj' 

where, by assumption, 

a 
mv(x,t)= axS(x,t), 

(6) 

(7) 

one can prove1,12 that ~ satisfies the Schrodinger wave 
equation 

'h a>v (x, t) = _ ..!f... a2
>v (x, t) + ,j, ( )~ ( t) 

t at 2m (Jx2 'I-' x x, , (8) 

where the function R (X, t) will be related to the probabil
ity density (the kernel of the semigroup corresponding 
to the relevant Markov process) on the configuration 
space, p(x, t), by 

lnp(~, t) = 2R~, t). (9) 

The coupled system of nonlinear equations (4) and (5) 
can thus be linearized by the transformation (6) and the 
result is the Schrodinger equation. Hence conventional 
quantum mechanics can be formulated in terms of 
stochastic processes. We can then use either of the two 
mathematical schemes in order to obtain information 
about quantum dynamics. 

We shall now see how one easily can extend stochastic 
mechanics so as to incorporate velocity dependent 
forces. We consider the most simple linear velocity 
dependent force classically given by 

j=-mf3v. (10) 
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By incorporating this force into the framework of 
stochastic mechanics one arrives at the dynamical 
equations4 

- m~v - mw
2
x = m [~~ v + ~~ v - (~~ u + D ~:~)] (11) 

and Eq. (5). Here we have assumed an additional 
harmonic potential with angular frequency w. By letting 
the "diffusion constant" D tend to zero, which corre
sponds to the Newtonian limit, one sees that the corre
sponding force is that of a damped harmonic oscillator 

mx(t) = - m{3i(t) - mw2x(t), (12) 

where the dot . denotes differentiation with respect to 
time. 

If we still assume that Eq. (7) is valid, one can re
write Eq. (11) in the following manner: 

il 
=- oX (~S+¢), 

where 

¢(x) = tmw 2x 2
• 

The same procedure as that which lead to the 
Schrodinger equation (8), can now be applied and one 
arrives at the following equation4 : 

(13) 

(14) 

(15) 

where a (t) is a time dependent constant which we will 
fix below. Equation (15) has been derived, in another 
context, by Kostin8 using the Heisenberg-Langevin 
equation for a quantum Brownian particle interacting 
with a thermal environment as discussed by Ford, 
Kac, and Mazur. 13 A semiclassical derivation has also, 
independently, been derived by Kan and Griffin. 14 

We will now adjust the time dependent constant a(t) in 
such a manner that the sum of potential and kinetic en
ergy equals the total energy at each instant of time. 
This can be regarded as a suitable "renormalization" 
of the ground state energy of the damped harmonic 
oscillator because, physically, it is now imbedded in 
some environment. This adjustment can now easily be 
achieved by notiCing that in stochastic mechanics, as 
well as in quantum mechanics, we can use the following 
operator representation of the energyl5: 

E =i1i~ 
op ilt (16) 

and 

def li
2 

( (
2

) E = (E ) = - - - + (A-) 
OP 2m ilx2 'r' • (17) 

These equations imply that 

a(t)=- I p(x')S(x',t)dx'. (18) 

Now, using the fact that 

S(x, t) = (mD/i) In[ >It (x, t)/>ItX(x, t)], (19) 
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we can easily obtain the following Schrodinger
Langevin equation: 

'li0>It(x, t) __ ..!!.... il
2
>It(x, t) +.1 2 2>It( t) 

z ot - 2m ilx2 2 mw x x, 

~Ii' r. >It (x , t)J ~ff' 
+2ilnL>ItX(x,t) >It(x,t)-2i>It(x,t) 

x j+oo dx'i >It (x' t) 12 1n [>It (X' , t)l (20) 
_00 ' EJt"(x', tjJ . 

We notice that Eq. (20) has the remarkable property 
that every stationary solution of the harmonic oscilla
tor is a solution. Moreover, it can be verified by ex
plicit calculations that Eq. (20) also has the following 
type of solutions: 

>It (x , t) = IPn(x - S (t) exp (- iEnt/li) 

xexp[ij(x, W), ~(t), t)], (21) 

where IPn is the nth eigenstate of the harmonic oscillator 
and 

Fn = (n +t)liw. (22) 

The function j(x, ~, t, t) is given in closed form by 

j(x, W), ~(t), t) = (m/Ii)x, ~(t) + g(;(t) , ~(t), t), (23) 

where s (t) satisfies the ordinary differential equation 

~'(t) + ~~ (t) + w2 ~ (t) = 0 (24) 

and g(~, ~, t) is determined by 
• '2 

lidg(~(~~ s(t), t) =m~W)~(t) + t mw2 S2(t) _ m~. (25) 

It is now a matter of straightforward calculations to 
find an explicit expression of the mean energy, which 
turns out to have the form 

E(t)=(>It,ih:t>It) 

= (n + t)1i w + tm ~5 exp(- ~t)[ (1 + (i-) cos2 (SU + no) 

+ n2 sin2(nt + no) + ~n sin(2nt + 2nD)] (26) 

if the solutions of Eq. (24) are parametrized as follows: 

~(t) = ~o exp(- ~~t) cos(nt + no) (27) 

where 

(28) 

which we assume is positive. We notice that, for large 
times t, the solution (21) approaches the nth stationary 
state of the harmonic oscillator and that Eq. (26) im
plies that 

limE(t) = (n + t)liw. (29) 
1-00 

Hence we see that our approach to velocity dependent 
potentials, in a special case, exhibits a remarkable 
property of an "approach to equilibrium, " where equilib
rium corresponds to a stationary state of a harmonic 
oscillator. The solutions of the form (21) have also 
been obtained, independently, by Kan and Griffin14 for 
the special case when n = 0, and in general by Kan. 16 

The question of uniqueness of these solutions is briefly 
discussed in Ref. 17, 
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The current and stochastic velocities can now be cal
culated. For the ground state of the harmonic oscillator, 
i. e., n = 0, one finds that 

v = - ~o exp(- ii3t)[cos(~t + ~o) - sin(~t + ~o)] (30) 

and 

u = - w(x - ~(t». 

We see that (30) and (31) tend to their "equilibrium" 
values,4 when the time t tends to infinity. 

(31) 

We can then characterize the corresponding stochas
tic process completely by the following stochastic dif
ferential equation: 

dx(t) = (- wx(t) + wW) + ~(t» dt +dw(t), (32) 

where w (t) is a Wiener process with diffusion constant 
D. For each function ~ with continuous time derivative, 
(32) has the solution1• 4 

x(t) = w) + Jot exp[ - w(t - s)] dw(s), t~ O. (33) 

The two-point function can then easily be evaluated, 

E(x (t)x(t'» = -2 Ii exp(- wit - t' I) + ~ (t)W'). (34) 
mw 

For large times t and t', this decays into the corre
sponding correlation for the harmonic oscillator, 
independent Of the initial conditions Of ~(t). 

As a final remark we stress that the uncertainty 
relation between momentum, and position17 is valid for 
all times. This means that we have quantized a system 
with energy dissipation, without having any contradic
tion with the Heisenberg uncertainty prinCiple, which 
has been a central difficulty in previous works (see, 
e. g., Ref. 7, where additional references can be found). 

III. CONCLUSION 

In the preceding paragraph we showed that a "quant
ized" damped harmonic oscillator exhibits a remarkable 
structure namely that of asymptotic stationary states. 18 

Hence we can have the coexistence of damped and 
stationary solutions, although the superposition prinCi
ple, in this special case, is no longer valid. We showed 
this explicitly for the harmonic oscillator but our 
method works in other cases. A closed form can, e. g. , 
be given for the free motion and the constant force 
case. We do not discuss these solutions in the present 
work since these have been discovered, independently, 
by other people (see, e. g .• Refs. 19-21). 

Let us now return to the case of the harmonic oscilla
tor and briefly discuss the apparent irreversible be
havior. We restrict ourselves to the ground state of the 
harmonic oscillator. The mean forward velocity can 
easily be calculated if one uses, e. g., the stochastic 
differential equation (32). One finds that 

( de!. (dx(t») ( . V.X,t) =~!~E at =-WX t)+wW)+W). 

The normalized probability denSity p(x, t) will then 
satisfy the (forward) Fokker- Planck equation 

(35) 

op + 0 a2p iii ax (v.p) - D ax2 = D. (36) 
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With the choice (35) for the forward mean velocity one 
finds the following unique solution: 

(
mw)1/2 / mw ) 

p(x,t)= n; exp\- Ii [x- W)]2 (37) 

which, of course, also could have been obtained from 
the solution in the form (21). If the probability denSity 
p(x, t) is time independent one can show, by using the 
continuity equation for pIx, t), that v.(x, t) must be time 
independent. For the ground state of the harmonic oscil
lator this fact corresponds to the choice 

V.(x, t) =- wx(t). 

The Fokker-Planck equation then, of course, 
following unique normalized solution: 

Po(x) = (;:/12 
exp ~ mrt x2). 

(38) 

gives the 

(39) 

We see that every solution of the form (37), indepen
dently of the initial conditions of the ~(t) function, ap
proaches the stationary solution (39). This is typical 
irreversible behavior. 

According to information theory the quantity 

[(pet»~ ~f I dx p(x, t) Inp(x, t) (40) 

is the unique (to within a positive multiplicative con
stant) measure of the information contained in the 
probability distribution p. 22 Straightforward calculations 
now show that 

(41) 

where [0 is a constant. Hence our total information 
about the system is constant in time, which should be 
obvious, since the distributions Po and p satisfy a con
tinuity equation. 

In order to measure the irreversible behavior in 
terms of information-theoretical concepts, one can 
introduce the relative entropy, [(p(t) I Po) defined by the 
following equation23 : 

I def" 
[(pet) Po) = J dx p(x, t) In(p(x, t)/ Po(X». (42) 

In our case, [(pet) Ipo) can easily be evaluated and one 
arrives at the expression 

[(pet) I Po) = (2w/D)e(t) 

which tends to zero as the time parameter tends to 
infinity. This will have the consequence that 

lim p(x, t) = Po(x) 
t_a> 

(43) 

(44) 

in a suitable sense. We also notice that /(p(t) 1po) is a 
measure of the potential energy of the claSSical damped 
harmonic oscillator, and more precisely 

[(pet) I Po) = (2w/fi)[E(t) - Eo - ~m~2 (t)]. (45) 

Although many of the statements in the present paper 
cannot be considered as "rigorous" we believe that 
stochastic mechanics can be useful in the study of some 
nonstandard quantum mechanical problems. 
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Electromagnetic eigenmode perturbations caused by 
deformation of a plasma core in a spherical cavity 
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A perturbation formalism for the electromagnetic eigenmodes of a lossless spherical cavity resonator has 
been derived from the Boltzmann-Ehrenfest theorem. The perturbations are caused by adiabatic 
deformations of a plasma core located at the center of the cavity. 

1. INTRODUCTION 

For a lossless spherical microwave resonator we 
analyze the eigenmode perturbations caused by surface 
deformations of a nontransparent plasma core located 
at the center of the cavity. An immediate consequence 
of the deviations from spherical symmetry of the plas
ma-field interface is the complete or partial removal 
of the azimuthal degeneracy of the characteristic elec
tromagnetic multipole fields, Our perturbation calcula
tion is based on the Boltz mann- Ehrenfest adiabatic 
theorem, 1-3 The applicability of this intuitively appeal
ing approach hinges on the assumption that the deforma
tions of the plasma boundary take place on a time scale 
which is long in comparison with the oscillation period 
of the microwave field. Such deformations may be pro
duced by acoustic surface vibrations or by low frequen
cy electrostatic surface oscillations of the plasma which 
can exist only in the presence of an external electro
magnetic field. 4 

For the sake of simplicity we assume the plasma 
boundary to be sharp, thereby neglecting the thermal 
motion of the particles, In conformity with the adiabatic 
approximation for the plasma surface deformations, 
we treat the plasma as a perfect conductor. The as
sumption of infinite plasma conductivity, which can be 
justified only as long as plasma heating by the micro
wave field may be disregarded, has also been made by 
Yankov5 in a theoretical study of the stability of a 
homogeneous plasma sphere in external uniform and 
quasiuniform electromagnetic fields, and by ButlerS in 
an equilibrium analysis of a dense spherical plasma 
core located in the center of a spherical microwave 
cavity in which there exists a rotating transverse elec
tric multipole field of lowest order together with a 
uniform d. c. magnetic field o High- conductivity plasma 
cores have been simulated by copper spheres, spheroids 
and other configurations in an analog experiment7 

devised by Hatch and Butler to study the conditions for 
the equilibrium of dense plasma cores contained by 
microwave cavity fields. 

Describing the plasma surface deformations by multi
pole parameters, which are spherical tensor compo
nents, and expressing the characteristic electromag
netic fields in terms of vector spherical harmonics 
enables us to take advantage of the elegant and powerful 
techniques supplied by the theory of the irreducible 
representations of the three-dimensional rotation group. 
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These techniques are used extensively in atomic and 
nuclear physics. By means of the Clebsch-Gordan re
duction and the Racah recoupling transformation we ob
tain concise expressions for the components of the 
eigenfrequency perturbation matrices. 

In Sec. 2 we discuss the characteristic electromag
netic modes for a domain bounded by two concentric 
spherical shells of infinite conductivity. In accordance 
with the approximations mentioned above, these charac
teristic modes represent the unperturbed resonant elec
tromagnetic field set up in the space between the plas
ma core and the (superconducting) metallic cavity wall. 
Expressions for the time-average electromagnetic en
ergy of these eigenmodes are derived in Appendix A. 
Section 3 contains the formal analysis of the eigenmode 
perturbations induced by deviations from spherical 
symmetry of the plasma-field interface; in this section 
we make use of results derived in the Appendices A, B, 
and C. 

2. EIGENMODES OF A MICROWAVE CAVITY 
BOUNDED BY TWO PERFECTLY CONDUCTING 
CONCENTRIC SPHERES 

In the present section we analyze the electromagnetic 
eigenmodes of a lossless spherical cavity resonator 
which is partially filled with a plasma sphere at its 
center. The plasma is treated in the limit of infinite 
conductivity. We therefore deal with the problem of de
termining the characteristic modes of a cavity bounded 
by two concentric spheres r=ro and r=Ro (ro <Ro) 
which are perfect conductors. Infinite conductivity of 
the cavity walls entails that the tangential component 
of the electric field E and the normal component of the 
magnetic field B vanish at r = ro and r = Ro. 

For harmonic time-dependence of the electromag
netic field vectors, 

E(t, x) = E(x) exp(- iwt), B(t, x) = B(x) exp(- iw/), 

(2.1) 

the Maxwell equations in a source-free domain of the 
vacuum are equivalent to either one of the two sets of 
equations 

(v2 + k2)E = 0, 

V.E=O, 

B=- (i/k)VXE, 
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or 

(V2 + k2)B= 0, 

V·B=O, 

E= (i/k)VXB, 

(2.3a) 

(2.3b) 

(2.3c) 

where k=w/c, with c denoting the vacuum light velocity. 

In a spherical coordinate system (r, e, cf» a solution of 
the vector Helmholtz equation (2. 2a), which also satis
fies (2.2b) iss 

for which a nontrival solution exists if and only if 

jl (kro)n l (kRo) =jr(kRo)nl (kro)' (2.11) 

The nth root of this transcendental equation determines 
the characteristic frequency 

(2. 12) 

of the transverse electric multipole mode TEnlm• Since 
for each value of l there are (21 + 1) values of m, it is 
obvious that each characteristic frequency w nl is 
(21 + I)-fold. On account of (2.4) and (2.10)-(2.12) the 

Elm =11 (kr)r X VY1m(e, cf», 1 = 1,2,3,' . " -l.oS m <S l, electromagnetic field in the TEnim mode is 

(2.4a) Enlm =/, (kn,r)r XVYlm , Bntm = - (i/knl)V xEnlm , (2. 13a) 

where II (kr) denotes either a particular spherical Bessel 
function or a superposition of two linearly independent 
spherical Bessel functions, and where Ylm(e, cf» is the 
spherical harmonic of order (l, m). The solution (2.4a) 
together with the corresponding magnetic field 

i 
~m=- kVXEtm (2.4b) 

is referred to as the magnetic multipole lield of order 
(1, m). From Eq. (2.4a) it is immediate that 

r· E'm=O. (2.5) 

Magnetic multipole fields are therefore also called 
transverse electric (TE) multipole fields. The trans
verse magnetic (TM), or electric, multlpole field of 
order (l, m) is defined by8 

and 

Blm=/r(kr)rXVYlm(e,cf», l=1,2,3,"', -l<sm<sl 

(2.6a) 

(2.6b) 

The expression (2.6a) satisfies the vector Helmholtz 
equation (2. 3a) as well as the source equation (2.3b), 
and Eq. (2. 6b) corresponds to Eq. (2.3c); Eq. (2.6a) 
implies the transversality of B'm: 

r. Brm =0. (2.7) 

Since the coordinate origin is excluded from the domain 
(ro "" r "" Ro), we represent the radial function II (kr) as 
a linear combination of the Bessel functions of the first 
and the second kind, j,(kr) and n,(kr), 

II (kr) = Clj, (kr) + D,nl(kr). (2.8) 

The characteristic TE modes of the electromagnetic 
field in the domain ro <S r <S Ro, bounded by two perfect 
conductors, are determined by Eqs. (2.4) in conjunc
tion with the boundary conditions 

(2.9) 

which ensure that the tangential components of E and 
the normal component of B vanish at the plasma-field 
interface and on the cavity wall. On account of (2.8) 
the boundary conditions (2. 9) lead to the system of 
homogeneous equations 
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with 

II (knrr) = CnrUr(knzr) + Qn,nz (knlr)], 

where 

Qn, = Q~ZE = - U I (kn1rO)/n, (kn,ro)] 

=- UI(knrRo)/n/(knIRo)], 

and where 

k"z=k~IE. 

(2. 13b) 

(2. l3c) 

(2. 13d) 

The relationship between the normalization constant 
Cnr and the total electromagnetic energy of the TEnim 

mode is established by Eq. (A10). 

The characteristic TM modes of the electromagnetic 
field in the domain ro <S r <S Ro are determined by Eqs. 
(2.6) together with the boundary conditions 

rof,(kr)l = 0, rof,(kr~ = 0, (2.14) 
[ or] r=ro [ar J r.Ni) 

which according to (2.6) ensure the vanishing on the 
cavity walls of the tangential components of E and the 
normal component of B. With (2.8) and (2.14) we obtain 
the system of homogeneous equations 

c ld
d 

[rj,(kr)]r.r +D'dd [rn,(k1')]r.r =0, r 0 r 0 
(2.15) 

C'dd [rj,(kr)]r.R +D'dd [rnl(kr)]r_R =0, r 0 r - 0 

for which nontrivial solutions exist if and only if 

(-! [rjl(kr)]ro) (d~ [rn,(kr)ho) 

= (:r [rjl (kr)]RO) (:r [rnl(kr)]ro) . (2.16) 

The characteristic frequency 

(2.17) 

of the transverse magnetic multipole mode TMn1m is 
then determined by the nth root of the transcendental 
equation (2.16); it is clearly again a (2l + I)-fold eigen
frequency. With (2.6), (2.15)- (2.17), and (A14) we 
write for the electromagnetic field in the TMnim mode, 

(2. 18b) 
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where 

TM knlroj 1-1 (knlrO) -Iii (knrro) 
ani = ani :=-

k nlr Onl _1 (kn1rO) -In,(kn1rO) 

and where 

= _ knlROj 1-1 (kn1RO) - lh(knIRo) 
knl Ron l _l (knIRO) -lnl (knIRO) 

(2. l8c) 

(2. l8d) 

The relationship between the normalization constant 
enl and the time-average electromagnetic energy of the 
TMnim mode is given by (All). 

3. SHAPE PERTURBATIONS OF THE PLASMA· 
FIELD INTERFACE 

A deformation of the plasma-field interface modifies 
the electromagnetic eigenmodes which can exist in the 
domain bounded by the plasma surface and the metallic 
cavity wall. Changes of the characteristic field fre
quencies which are caused by small adiabatic shape 
perturbations of the plasma surface may be determined 
by means of the Boltz mann- Ehrenfest adiabatic theo
rem. 1-3 This theorem is applicable provided that the 
shape perturbations occur on a time scale which is long 
in comparison with the field oscillation period and that 
these perturbations are not large enough to induce tran
sitions between adjacent modes. For the present pur
pose, the Boltzmann-Ehrenfes~ theorem asserts that 
the total time-average energy U of the electromagnetic 
field in the domain defined by the plasma boundary and 
the cavity wall divided by the characteristic frequency 
w associated with this domain remains unchanged. 

fJI w = invariant, (3.1) 

if the plasma boundary deformations are continuous and 
sufficiently small; the latter requirement means that the 
radial deviations 5r of the deformed surface from the 
spherical surface are small compared to the wavelength, 
271C/Wnl , of the unperturbed eigenmode. From (3.1) it 
is immediate that 

(3.2) 

- -
where 5w and 5U denote the changes of wand U which 
are caused by the deformation of the plasma surface. 
The force, FI>' exerted by the electromagnetic field on a 
unit area of the undeformed plasma boundary surface is 

(3.3) 

where en ea, e¢ are the unit vectors of the spherical co
ordinate system (r, 8, r{», and where (] denotes the 
Maxwell stress tensor, whose components area. 9 

a ",e= 4~ [- E"Ee- B"Be + ~O",e(E2 + B2)], 

a=r,e,r{>, (3=r,e,cp. (3.4) 

Since on the surface of a perfect conductor the tangential 
components of the electric field and the normal compo
nent of the magnetic field vanish, the electromagnetic 
pressure is always normal to such a surface. There
fore, Eq. (3.3) becomes, in accordance with (3.4), 
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Here, the subscript (r :=ro) indicates that the field com
ponents Be, B4>' and Er are to be evaluated at r=ro_ 
The work, - I5U, performed by the electromagnetic 
pressure (3.5) during the adiabatic process of surface 
deformation is 

(3.6) 

where da denotes the element of surface area. Since 
the radial deviation 5r is assumed to be a continuous 
function of the angular coordinates e and cP for which 

15rl «ro, I :e or \« IlIrl, I o~ I5r\« lori, (3.7) 

we are justified in replaCing the unit vector normal to 
the deformed surface by the unit radial vector er • With 
(3.5) andJ3. 6) we may then write for the adiabatic 
change I5U of the time-average of the total electromag
netic energy stored between the plasma core and the 
cavity wall, 

1 f2. 5U= -r2 dcp 
871 0 0 f sine de or(8, cp)[E~- B~ - B~ lr . 

o 0 

(3.8) 

An adiabatic and volume conserving deformation of the 
plasma-field interface is stable if 

5U>0, 

or, by virtue of (3.2), if 

5w " O. 

(3.9) 

(3.10) 

The assumption of infinite plasma conductivity ensures 
conservation of the photon number 1'1 during the de
formation process. The stability conditions (3.9) and 
(3.10) are therefore directly related by the equation 

(3.11) 

It is convenient to describe the shape of a surface 
which deviates only slightly from spherical symmetry 
by means of a multipole parameterization. 10 We there
fore characterize the deformed plasma-field interface 
by an expansion in spherical harmonics of the radius 
vector r(8, cp) from the center of the sphere to a point 
with angular coordinates (e, cp) on the deformed surface, 

1'(8,cp)=ro{1+ ~o Esi3saYsa(8,CP~ +O({32). (3.12) 

Since r(8, cp) is a real function of the angular variables, 
and since Yia = (- 1 ray 50 -a, the multipole parameters 
i3sa satisfy the relation 

(3.13) 

The surface deformation is measured by the distance 

(3.14) 
50a 

For each multipole of order s there are (2s + 1) param
eters {3su (- s '" (J '" s). Equation (3.13) implies that the 
parameter {3so is real and that the 2s complex param
eters {3sa with (J"* 0 are not independent but are equiva
lent to 2s independent real parameters. If s > 1, 
three of these parameters specify the orientation of the 
deformed surface, so that 2s - 2 parameters are asso
ciated with its intrinSic shape. A mere change in 
volume of the plasma core without shape distortion of 
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the wall is specified by the monopole parameter i300• 

The dipole parameters i31a (u = - 1,0,1) represent a dis
placement of the center of mass of the plasma core and 
are not related to its shape, as the I i31a I are small, in 
accordance with the first relation in (3.7). We there
fore restrict the summation in expression (3. 14) to in
clude only terms with s > 1. 

Since for a given TEn1m or TM,./m mode the corre
sponding eigenfrequency, Eq. (2.12), or Eq. (2.17), as 
well as the corresponding electromagnetic energy, Eq. 
(A10), or Eq. (All), are independent of m(-l ~ m ~ l), 
we are confronted with a degenerate perturbation prob
lem when considering distortions of the plasma-field 
interface. Because of the azimuthal degeneracy of the 
TEn1m or the TMnim modes, a particular linear com
bination of the 2l + 1 independent multipole fields (2.13) 
or (2.18) which belong to the same value of n and to the 
same value of l but to different values of m has to be 
substituted in (3.8). A deformation of the plasma-field 
interface will either partially or completely remove this 
degeneracy. As a zero order magnetic or electric mul
tipole solution of Maxwell's equations in the cavity do
main bounded by the deformed surface (3.12) and the 
cavity wall r=Ro we now choose the linear combination 

{ enll"}= t A(n,l)I"m{Enrm}, -l~IJ."d, 
Bn,.,. m=-I Bn'm 

(3. 15) 

where the coefficients A(n, l).,.m are functions of the de
formation parameters f3SfJ' In order to ensure the same 
normalization and orthogonality for the electromagnetic 
field represented by the linear superposition (3. 15) as 
exists for the field vectors (Enfm , Bn1m), the coefficients 
A(n, l).,.m must satisfy the unitarity conditions 

6 A(n,l)t,~(n,l)"m = lJI"'" 
m 

(3. 16) 

As an immediate consequence of (A1), (A3), and (AS) 
we have the orthonormality condition 

161T
1
U r dV[E!'m" Enlm + B:rm,· Bnlm]=lJm'm' (3.17) nl )v 

ea 

In (A10) and (All) the time-average electromagnetic en
ergies for TE and TM modes are expressed in terms of 
a single field normalization constant. With (3.15), 
(3.16), and (3.17) we have 

16
1
U- f dV[e,i'l"" enl" + B:,I'" Bn'l"] = (jl"'I"' (3.18) 1T nl vea 

The linear combination (3.15) represents the particular 
electromagnetic field which the perturbed field ap
proaches in the limit of vanishing deformation of the 
plasma-field interface. By replacing in (3.8) the time
average (real) field components with the corresponding 
(complex) field components defined by (3.15) we obtain 

for a TE mode, and for a TM mode 

(jUnll"'I" = flrr Id(B, cf>}[(e n'l"')i (enl I")r 

- CBn'l",)I(BnzI")e- CBnZI",):(Bn' 1")4)] (r:ro) {jr(e, cf», 

(3. 19b) 

where 

1 d(B, cf»'" = 1
0

2
• dcf> 1

0
• sinBdB"', 

and where (jr(B, cf» is given by Eq. (3.14). The square 
bracket terms in (3. 19a) and (3. 19b) are time-average 
quantities in accordance with the oscillatory time de
pendence, Eq. (2.1), of the electromagnetic fields. For 
a given plasma surface deformation, the proper linear 
combination (3.15) is constructed by selecting the co
efficients A(n,l)I"m such that the matrix (3. 19a) or 
(3. 19b) is diagonal in the (2l + l)-dimensional subspace 
associated with a transverse electric or a transverse 
magnetic (n, l)- mode. If we denote a perturbation {jw 
of the characteristic frequency wnl by w~g, we have 
for the characteristic frequency Wnr" of a perturbed 
(n, l)-mode the expression 

(3.20) 

which is exact to first order. We then replace (3.2) by 

(3.21) 

where 

Unll" = 1!1T I dV[ lenll" 12 + IBnl.,.12]. 
Vea 

(3.22) 

From (3.18) and (3.22) it is immediate that 

(3.23) 

With the definitions 

(3. 24a) 

or 

™ r 
len, l);:~ = 16~~,M ~ ) dee, cf»[ (E:'m')r (En1m)r- (B!'m'): 

X (Bn1m)e - (B:1m,) 4) (Bnlm)4)];:~o (jr(B, cf» 

we obtain from (3. 19a) or (3. 19b), and (3.21) 

o A(n, l)t'm.A(n, l)I"ml(n, l)m'm = (j""I"w~l~. 
m'm 

(3. 24b) 

(3.25) 

If we multiply Eq. (3.25) by A(n,l)I"'iii, we find after 
invoking the unitarity relations (3.16) the set of 
equations 

1 

o [len, l);;;m - w~n{j;;;m]A(n, l)I"m = O. (3.26) 
m--l 

This system of homogeneous equations has nontrivial 
solutions if and only if its characteristic determinant 
vanishes, 

det[l(n, l)m'm - w~~~{jm'm] = O. 

Since the rank of the characteristic determinant is 
(3. 19a) 2l + 1, the equation (3.27) is an algebraic equation of 
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degree 21 + 1 in the frequency perturbation w~l~. There 
are then, in general, 21 + 1 different real roots for this 
equation. These roots are the values of w~l ~ to be sub
stituted in (3.26) in order to determine the coefficients 
A(n, l)"m. If all 2l + 1 roots w~l~ are different, the 
azimuthal dee:eneracv is comoletelv removed. 

We now evaluate the integrals in (3.24) by utilizing 
some of the results derived in Appendices Band C. In 
accordance with (B15) and (3,14) the integrands in 
(3, 24a) and (3. 24b) may be written as 

[ 1'1.*(1). B(t) ]TE Or 
~'m' nlm r=-ro 

and 

l(l+l) [l TE ( ) (l 1) TE ( )]2 
= (21 + 1)3 gn,l+l ro - + g", 1-1 ro 

x [lYi,''i:l . y;: 1+1 + v'l(f+T)(Yt,7:1 . Y~ 1-1 + Y'!,fl ' y;: 1+1) 

+ (l + 1 )Y'!,7:1 ' Y~ I-I Jro 0 f3 soY sa' (3, 28a) 
$oa 

[E~/';;)' E~~~ - B~I~)' B~l~];~oOr 

TM -2[ TM( ]2(1 1)1(1+1)[(1 1)y*m' ym = (knl ro) gnl ro) I + 2l+1 + 1,1+1· 1,1+1 

- v'l\l+T) (Y~';':I ' Y~ I-I + Y~';':I . ~ 1+1) + I Y~';':I ' Y~ I-I] 

- (k~IMro)2Y'!t, Yzi}ro 0 f3saYsa, (3,28b) 
',a 

respectively. The vector spherical harmonics Yi,J 
(j = l, l± 1) are defined by (B1). The radial functions 
g~~*1 (r) and g!~(r) are in accordance with (2, 13b) and 
(2, 18b) given by 

g!~*1 (r) = C~IE(j 1%1 (k~,Er) + a~rEn,.t (k~IEr)] 
and 

(3. 29a) 

(3. 29b) 

By virtue of formula (C6) we find, after combining 
(3. 28a), (3. 29a), (A9), and (A10), for the expression 
(3,24a) 

I(n, l)~!;,. = - r5w~IE (161TU~rErI0 f3 sa J d(8, 1» 
sa 

X[B*(t). B(t) ]TEy 
nlm "'m TO sa 

= (- ),,,-1 ~ w~n1- (rO/RO)(nl(k~IErO)/n,(k~,E RO)2]-1 
V41T 

X [1 OJ', 1+1 OJ. 1+1 + 2v'l\l+T)0!'. '+1 OJ, I-I 

+ (l + l)oJ', 1-1 0;,I_tl0 I(jj ' ls;f3)m'm, (3,30a) 
s 

and, after combining (3. 28b), (3. 2gb), (A9), (All), and 
(A12), for the expression (3. 24b) 

I(n, l)~~ = r5w~r(161TU:rrl 0 f3sa /a(8, 1> )[E~,~). E~I~ 
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sa 
B* (t) B(t) ]TM Y - "'m'"' nlm (r=ro) sa 

= (- )m_1_ w~r{[ (k~rro)2 -I(I + 1)] 
fu 

_ (;~) 3 [(k~rRo)2 -1(1 + 1~ 
[(Z + 1)nl_l (k~rro) - Znl+l (k~,Mro) V}_I 

X [(I + 1 )n'_1 (k~IMRo) -In'+1 (krrRo)J 

x{l (1 + 1)[ (I + 1 )01',1+1 0J,I_l - 2Vl(f+Tj 

XOj',1+10J,I_l +lOJ',I_lliJ,I_tl- (2l + 1) 

X (k:rro)2oj',lijl} 6 J(jj'ls ;(3)m'm, 
s 
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(3,30b) 

where 

"1 (J2jl + 1)(2j + 1)) 1/2 .. , 
I(JJ Is; {3)m'm = \ 2s + 1 {3s,rn'-m W(IJIJ ; 1s) 

x(jOj'OlsO)(I, - m,lm/ls, m' - m). (3.30c) 

In deriving the results (3.30) we have used the sym
metry properties 

(aab{31 cy) = (- )a+b-C(b{3aa Icy), 

(aa b{31 cy) = (- )a+b-c(a, - CI, b, - {31 c, - y), 

(3.31a) 

(3. 31b) 

of the Clebsch-Gordan (C-G) coefficients, as well as 
the symmetry property 

W(abcd;ef) = W(cdab; ef) 

of the Racah W coefficients. From (3. 31b) it is im
mediate that the presence in (3. 30c) of the C-G co
efficient (jOj'O I sO) entails that j + j' - S == 0(mod2). Since 
either j,j'=1±1 or j,j'=l, it is then obvious that only 
even values of the multipole index s contribute to 
(3, 30a) and (3. 30b). Furthermore, from the presence 
of the C-G coefficient (l, - m, Im'l sa) it follows that 
1111' - m I ,; s ,; 21, Therefore, only those deformation 
multipoles (sa) (characterized by the surface param
eters {3so) contribute to (3, 30a) and (3. 30b) for which 

a=m'-m, 

1m' - m I ,; s ,; 21, 

s = 0, 2, 4, . , , . 

(3. 32a) 

(3,32b) 

(3. 32c) 

Since s=O implies that m'=m, the azimuthal degenera
cy of a transverse electric or a transverse magnetic 
(n, l)-mode can be removed (to first order) only by a 
quadrupole (s = 2), a hexadecupole (s = 4), or higher 
even (deformation) multipoles, The additional condition 

(3.32d) 

follows from the presence in (3. 30c) of the C-G co
efficient (jQj'O I sO) or of the Racah coefficient 
W(ljZj'; ls). If s'> 21- 2 the condition (3. 32d) implies 
that in (3.30a) and in (3. 30b) those terms vanish which 
are multiplied by liJ',I_lli"I_l. [If s < 2, it follows from 
(3. 32d) that in (3. 30a) and (3. 30b) there are no terms 
containing the factor lij',1+16"I_l.1 The relation (3,13) for 
the deformation parameters and the symmetry prop
erties (3.31) for the C-G coefficients ensure that the 
perturbation matrices (3. 30a) and (3. 30b) are Hermitian 
and, thus, that their eigenvalues w~~~ are real. If the 
rank of the characteristic determinant in (3.27) is (21 + 1 
- A), the multiplicity of the eigenfrequency perturbation 
w~~~ is A. This connection between the rank of the cha
racteristic determinant and the multiplicity of the as
sociated eigenvalue is true only for the so-called simple 
matrics, of which the Hermitian matrices constitute a 
subclass, Thus, the perturbed eigenfrequencies (3.20) 
are nondegenerate only if the characteristic determi
nant in (3.27) has rank 21. 

The sets of the expansion coefficients in (3.15) con
stitute the eigenvectors 

(3.33) 

of the perturbation matrix (3. 30a) or (3.30b). Since the 
matrices (3.30) are Hermitian, their eigenvectors 
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(3,33) which are associated with distinct eigenvalues 
w~l ~ are orthogonal. This orthogonality property is ex
pressed by the first equation in (3,16). Since for a 
simple matrix the maximal number of linearly indepen
dent eigenvectors associated with the same eigenvalue 
coincides with the multiplicity of this eigenvalue, it is 
possible to orthonormalize these eigenvectors and 
thereby fulfill this orthogonality relation even if the 
azimuthal degeneracy of a given eigenmode is not com
pletely removed by the deformation of the plasma 
boundary. 

APPENDIX A 

The normalization of the characteristic multipole 
fields (2.13) and (2.18) to unit energy density requires 
the evaluation of the integrals in the expression 

Unlm = 1~7T f dV[ 1 Enlm 12 + 1 Bnlm 1
2
], (A1) 

Vea 

which represents the time-average of the electromag
netic energy of the cavity resonator volume Vea' The 
integrations in (A1) are simplified if we take into ac
count that the time-average values of the electric and 
magnetic field energies in a cavity bounded by perfectly 
conducting walls (of arbitrary shape) are equal (Ref. 9, 
p, 291), 

J v dV(IEI2+ IBI2)=2Jv dvlEl2=2Jv dvlBl2. 
ca ca ca 

(A2) 

With (A2) and (2,13) or (2,18) we obtain for (A1), 

U,,'m= :7TC~, jRor2drUI(knlr) + CXnln,(knlr)]2 f2. drp 

x t s:~e de {s~~:e I Y,.le, ¢) I' + I :e y,'.le, ,,) I'}. 
(A3) 

For the evaluation of the these integrals, a few 
properties of the spherical harmonics, the Legendre 
functions of the first kind, and the spherical Bessel 
functions are needed. 

The spherical harmonics are defined for 1= 0,1,2, ... 
and - I ~ m ~ I by the relation 

y (e A-.)=r21 + 1 (l-m)'] 112 
Im,'I-' [47T (l+m)i PT(cose)exp(imrp). 

(A4) 

By means of the Legendre differential equation and the 
orthogonality relations for the Legendre functions 
PT(cose), which are stated on pp, 198-9 of Ref. 11, 
it can be shown that 

(A5) 

For the spherical Bessel functions of the first and the 
second kind, 
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we have the relations 

J drr2f~(kr)=!r3[Ji(kr)-71_1(kr)y'+1(kr)] (A7) 

where 

{
jl(kr)} 

fI (kr) = n , (kr) , 

and 

J dr r2j 1 (kr)n, (kr) 

= ir3[2j1 (kr)n,(kr) - j,_1(kr)n ,+1(kr) - j,+1(kr)n , _1(kr)]. 

(A8) 

The Eqs. (A7) and (A8) are immediate consequences of 
the first formula given on p. 88 of Ref. 11. By virtue of 
(A3), (A5), (A7), (A8), (2. 13c), and the cross product 
relation 

(A9) 

stated on p, 439 of Ref. 12, we find for the time-average 
electromagnetic field energy of a TE nim mode (- I ~ m ~ I) 
in the spherical cavity ro ~ r ~ Ro, 

UTE = (CTE )2 1(l + 1) (kTE)-4f[R n2(kTE R )]-1 
nl nl 167T nl l 0 1 nl 0 

(A10) 

The corresponding expression for a TMnim mode is 

U™ = (C™)21(1 + 1) (kTMt4{[(kTMR )2 -1(1 + l)jW1 
n I nl 167T nl nl 0 0 

x [(k~rRo)n'_1 (k~rRo) -In,(k~rRo) ]-2 

- [(k~,Mro)2 - l(l + 1) ]rii1 

x [(k~rrO)n'_1 (k ~rro) - In,(k~rro)]-2}. (All) 

Equation (All) can be derived from (A3), (A5), (A7), 
(A8), (2. 18c), (A9), and the recursion formula for 
spherical Bessel functions (Ref. 12, p. 439) 

21 + 1 
-z- jz(z) = JI_1(Z) + J 1+1 (z), 

{
jl(Z) 

JI(Z)= n,(z) , (A12) 

In Secs, 2 and 3, and in Appendix C, we refer to the 
relations 

d 
dr[r y,(kr)] =kr JI_1(kr) -l JI(kr) 

= - kr Jr+1 (kr) + (l + 1) J I (kr), (A13) 

which follow immediately from the relations 
l + 1 d 
-z-Jz(z)+ dz JI(Z)= jl_1(Z), 

I d 
~ JI(Z)- dz JI(Z)= JI+1(Z), (A14) 

which are stated on p, 439 of Ref. 12, 

APPENDIX B 

Solid angle integrations involving scalar as well as 
vector products of multipole field vectors are subs tan-
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tially simplified by expressing the fields in terms of 
irreducible tensors whose components, known as vec
tor spherical harmonics, are13,14 

Yi''iU:l, ¢)= 0 (jJl1 7!Zm)Y,,,(8, ¢)E T• (B1) 
"T 

Here, Y'IL denotes a spherical harmonic, (jJl17!Zm) a 
Clebsch-Gordan coefficient, 13,14 and ET a spherical unit 
vector, defined in terms of the Cartesian unit vectors 
ex, ey, ez by the relations 

-A (ex+ie y ), 7=1, 

7=0, (B2) 

~ (e,,- iey ), 7=-1. 

The definition (1) implies that there are three linearly 
independent irreducible tensors of rank Z; they are as
sociated withj =Z, j =l + 1, andj =Z- 10 

From the values of the Clebsch-Gordan coefficients 
UJllTIZm) (given on p. 76 of Ref. 15) it is immediate 
that the well-known relations 

L~Ylm = .,f(Z 'f mHZ ± m + l)YI,m~b 

where 

L~=exp(±i¢) (± :8 +icotB o~)' 

L 
. 0 

z=-la;p , 

may be written as 

LTYlm = (- j'VZ(Z + l)(Z, m + 7, 1, - 7!Zm)Y I , mH, 

where 

1 
- 12 L., 7=1, 

7=-1, 

(B3) 

are the spherical components of the angular momentum 
vector (operator) 

1 
L= -:-rxV. 

z 

From (El), (B3), and (B4) then follows the relation 

(r XV)Y lm (8, ¢) =iv'T(l+T)Y7, 1(8, CP)o 

From the identity 

v x (r x V) = rv2 - V ~ r or 
and from the Helmholtz equation 

where }z(kr) denotes a spherical Bessel function, it 
follows that 
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(B4) 

(B5) 

(B6) 

In order to express the first term on the right- hand 
side of Eq. (B6) in terms of vector spherical harmonics 
we first represent the position vector r as the contrac
tion of the two first-rank spherical tensors rYlT and En14 

r=r(~7Tr/2 ~ YfT(8,¢)eT' 

Next, we decompose the product of the spherical 
harmonics YfT and Y lm according to the reduction 
formula 

(B7) 

(3) 1/2[(Z+1)1/2 
YfTYlm=- 47T 2l+1 (Z+l,m- 7, 17!Zm)YI +1,m_T 

( 
Z ) 112 ] - 2Z+1 (l-1,m-7,17!Zm)Y I _1 ,m_T 

which follows from the Clebsch-Gordan decomposi
tion 13,14 

YfTYlm = (- )TYI, -TYlm 

= (- r(;;r/2~ [~~: }r/\10Z0 IjO) 

x(l,- 7,Zm!j,m - i>Y"m-T 

(B8) 

in virtue of the symmetry relations (3. 31a), (3. 31b) 

and 

(
2C + 1)1/2 

(aab{3! cy) = (- )b+S 2a + 1 (c, - ybi3! a, - cr). (B9) 

In view of (B7), (B8), and (El) we may then write 

[( I + 1 ) I 12 (I) I 12 ] • 
=-r 2Z+1 Y'i',I.I- 2Z+1 Y'l,1-1 

(B10) 

To the second term on the right-hand side of (B6) we 
apply the gradient formula [Eq. (2. 58) of Ref. 13 or the 
second equation on p. 150 of Ref. 141, 

rl(Z+1)1/2{df Z ,\ 
Vf(r)Ylm (8, CP) = - L 21 + 1 \dr - r IJ Yl, 1+1 

( 
Z )1/2(dl Z+l \ ] 

- 2Z + 1 dr + ----::y- f) Yt: I-I • (B11) 

With f(r) = (d/ dr)[r) I (kr) 1 and the differential equation 

we obtain from (811) 

( d Z+l) ] x dr + ----::y- Jz Yt: 1-1· (B12) 

By combining (B6), (BID), and (B12), we arrive at the 
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(
l _\1/2 (d l+1) 

+ 2l + 1) (l+ 1) dr +r lzY'i:'-1 

(B13) 

On account of the relations (A14) we may replace (B13) 
by 

curl JI (kr)(r XV)Y,m(e, cp) 

k 
= rn;-;-:; [lv'l+1h+l(kr)Yjl+l(e,cp) 

v2l + 1 ' 

- (l + 1)v'T "-1 (kr)Y7,,_l (e, cp)]. (B14) 

It is obvious that the vector given by (B5) is tangent to 
a sphereo On the other hand, the vector given by (B14) 
has a nonvanishing radial part. 

Since 

2 d ( Vx(rXV) JIY,m = J,rv Y,m - dr rJI)VY,m, 

we have for the radial part 

[VX (r XV)h(kr)Y,m(e, cp )j<r) 

=- JI(kr)~rYlm(e,cp) r 

1 l(l+1) 
= - J,(kr) ~ [vf+TY':', I+l(e, cp) - v'TYj I_l(e, CP)] 

r v2l + l' , 

and for the tangential part 

[V x (r XV) h (kr)Y,m(e, cp)l (t) 

d 
=- dr[r1i(kr)VY,m(e,cp)] 

kv'i\l+T} 
= (2l + 1 )3/2 [l h+l (kr) - (l + 1) h-l (kr)] 

(B15a) 

x[ v'TY7,'+l (e, cp) + Vi + 1 Y'i: 1-1 (e, cp )]. (B15b) 

The second equation in (B15a) follows immediately from 
(B10) and the second equation in (B15b) follows from 
(A13) and the gradient formula (B11). 

APPENDIX C 

By virtue of the formalism exhibited in the preced
ing appendix, the solid angle integrations in (3.24) are 
reduced to the evaluation of an integral of the type 

J[(l'm' ,j')*; lm,j; sa] 

= J d(e, cp)Yj.~,(e, cp)*. Yj,(e, cp)Ysa(e, cp), (C1) 

where d(e, cp) denotes the solid angle element The 
definitions (B1) and (B2) imply that 

I[ (Z'm' ,j')*; Zm,j; sa] 

= 6 (j', m' - T, 1 TIZ'm,)(j, m - T, 1 TIZm) 
T 
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(C2) 

By applying the reduction formula 

[ 
(2j' + 1) (2j + 1) ] 1/2 -

Yj',m'_TY"m_T=(-)m-
Ty 41T(2j+1) x(j'QjoljO) 

(j', - m' + T,j, m - TIJ, - m' + m)Y1.m'-m 

together with the orthonormality relation 

J d(e, CP)Y7,m'_m(e, cp)*Ysa(e, cp) = OjsOm'_m,a 

we obtain for (C2) 

I[ (Z'm' ,j')*; Zm,j; sa] 

=(_)mF2j~;(~~(~1~1~ 1/\j'Qjolso>s, (C3a) 

where 

5 == 6 (- r(j', m' - T, lTIZ'm')(j, m - T, 1 TIZm) 
T 

x(j',-m'+T,j,m- Tls,m-m'). (C3b) 

In this expression the sum over the products of three 
Clebsch-Gordan (C-G) coefficients can be evaluated 
by applying the Racah recoupling transformationo 13,14 

An immediate consequence of this transformation is the 
formula 

6 (hmlhm2IjI2ml~(h2m12.ism3Ijm)(hm2.ismslhsmn> 
mlm2 

=(hm lh3m 2sljm)v(2jI2 + 1)(2hs + 1)W(jlhj.is;h2h3), 

(C4) 

which enables us to express the sum (C3b) in terms of 
Racah W coefficients. In order to bring this sum to the 
form (C4) we interchange in the first C-G coefficient 
the angular momentum indices together with their pro
jection numbers (j',m'- T) and (l',m') in accordance 
with the symmetry relation (B9); we further interchange 
in the second C-G coefficient (j, m - T) and (1, T) in 
accordance with the symmetry relation (3. 31a)o The 
formula (C4) then yields for the sum (C3b) the 
expression 

5 = (- )J-Iv'(2l' + 1)(2l + 1) W(l'lsj ;j'l)(l', - m'lm Is, m - m')o 

(C5) 

By combining (C1), (C3a), and (C5) we find 

!are, cp)Yj.~,(e, CP)* 0 ¥Ti(e, cp)Ysa(e, cp) 

= (_ )m_l[(2j ' + 1)(2j + 1)(2l' + 1)(2l + 1n 1/2 
41T(2s+1) J 

x W(ljl'j'; ls)(jQj'O I sO)(l, - ml'm'l sa), (C6) 

where we have used the symmetry relations (3.31) for 
the C-G coefficients as well as the symmetry 
property13,14 

W(abed; ef) = (- )B+f-b-cW(jdae; be) 

for the Racah W coefficient. 

*Work performed under the auspices of the U. S. Energy Re
search and Development Administration under contract No. 
W-7405-Eng-48. 
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An exact solution for diffraction of a line-source field by 
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This paper deals with the exact solution of a special electromagnetic diffraction problem, namely, 
diffraction of a line-source field by a half-plane. The line source is located on the surface of the half-plane, 
and radiates an E-polarized wave described by u~ = H~I) (k'l )sinn</>I' where 11 = 1,2,3,' .. , and ('I '</>1) are 
polar coordinates with the origin at the source point. A new, closed-form, exact solution for the total field 
on the shadow boundary is presented. This exact solution consists of n terms of order k-P , where p = 
1,2, ... , n. Its first two terms, which are of orders k -1/2 and k - 3/2 relative to the incident field, agree with 
the asymptotic solution derived in a companion paper by the uniform asymptotic theory of edge diffraction. 

1. INTRODUCTION 
The diffraction of a line-source field by a half-plane 

was treated by ray techniques in Ref. 1, referred to here
after as Part I. The diffraction problem considered there 
has been sketched in Fig. 1. A perfectly conducting half
plane at x"" 0, .y = 0 is illuminated by a cylindrical wave 
due to an (anisotropic) line source located at (x = - d 
x cosn, .y = d sinn). By using the uniform asymptotic 
theory of edge diffraction, an asymptotic solution for 
the total field up to and including terms of order k-3

/
2 

has been obtained in Part I. That solution was given 
in (1. 2. 3) and 0.2.4) for the general case, and in (1. 3. 6) 
and 0.4.4) for two special cases. (Equations from Part 
I are quoted by their numbers preceded by 1.) As the 
uniform asymptotic theory is a formal asymptotic meth
od based on an unproved ansatz, the solution obtained 
from it in Part I, of course, mayor may not check with 
the asymptotic expansion of the exact solution for the 
problem under consideration. In the present paper, we 
will derive the exact solutions for some test cases, and 
show that they are in complete agreement with the solu
tion obtained by the uniform asymptotic theory. 

An arbitrary cylindrical wave emanated from a line 
source may be considered as a superposition of the 
multipole fields 

i( "') -H(I)(k ) [cosn<pl] = 0 1 2 ... (lola) uri' '1"1 - n r1 ,n, " , 
sinn<pl (1. 1b) 

where (rl' <PI) are polar coordinates with the origin at 
the source point (Fig. 1). For the case n=O in (lola), 
i. e., when the line source is isotropic, exact solutions 
to the diffraction problem were first derived by Carslaw 
and Macdonald around the turn of the century. More 
easily accessible is the elegant solution due to Clemmow 
as described in Ref. 2, pp. 580-84. Clemmow's 
approach is first to decompose the Hankel function H~I) 
as an angular spectrum of plane waves. For each plane 
wave of the spectrum, the Sommerfeld half-plane solu
tion applies and, then, the total field solution is ex
pressed as a superposition integral with the Sommerfeld 
half-plane solution weighted by the spectrum of the inci
dent field as its integrand. The same approach can also 
be applied in principle for the cases n '" O. 3 However, 
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the superposition integrals in the latter cases become 
quite complex, and to our knowledge no explicit solution 
has been obtained. 

Since our main purpose is to check the validity of the 
asymptotic solution given in Part I, we will not solve 
the diffraction problem of Fig. 1 in its full generality. 
Instead, our attention will be focused on a test case. In 
this test case, we assume (i) u = E z (E-polarized wave), 
(ii) n = 0+ (line source on the upper surface of the half
plane), and (iii) ¢ = 7T (observation point on the shadow 
boundary). This case corresponds to Case A discussed 
in Part I, Sec. 3. The incident field will be given by 
(1. 1). Thus, the solution to be derived should eventually 
be compared with (1. 3. 9) and (1. 3. 11). 

Our method of solution consists of two main steps. In 
the first one (Secs. 2 and 3), for incident fields in (1. 1) 
with n = 1 and 2, the total field solutions are obtained 
through differentiation of Clemmow's solution for the 
isotropic line source, and the enforcement of the edge 
condition. Guided by those results, we then derive in 
Sec. 4 a recurrence relation for the total field on the 
shadow boundary due to a general incident field with an 
index n in (1. 1). The recurrence relation is subsequently 
solved by two methods in Secs. 4 and 5. 

Several conventions used in this paper are stated be
low: (i) The time factor is exp(- iwt) and is suppressed. 
(ii) Unless explicitly mentioned otherwise in Sec. 2, 
only the case of E-polarization is considered and u = E z • 

(iii) Three sets of polar coordinates are employed (Fig. 
1): (r, ¢) has its origin at the edge point (x = 0, y = 0); 
(rl' <PI) at the source point (x=-dcosn, y=dsinn); and 
(r_l' ¢-l) at the image source point (x= - d cosn, y 
= - d sinn). All angles take values between 0 and 27T; 
¢, ¢-l, and ~l are measured clockwise, and ¢l 
counterclockwise. 

2. DIFFERENTIATION OF SOLUTIONS TO 
EDGE-DIFFRACTION PROBLEMS 

In this section, we deduce a theorem on the differen
tiation of solutions to half-plane diffraction problems. 
In Sec. 3, this theorem will be applied to the diffraction 
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FIG. 1. A half-plane illuminated by a line source at 
(x=-dcosn, y=dsinn). 

problem of Fig. 1 in the cases of an incident field (1.1) 
with n = 1 and 2. The solution to these problems will be 
obtained by differentiation of the known solution to the 
diffraction problem for the isotropic line source as 
presented below, 

Referring to Fig. 1, we consider the diffraction of the 
cylindrical wave 

(2.1) 

due to an isotropic line source, by the half-plane x -"" 0, 
y = 0. The two cases of E-polarization and H-polarization 
are treated simultaneously, and the resulting total field 
is denoted by ul = E. in the case of E-polarization and 
by u2 =H. in the case of H-polarization. Then uI , u2 must 
satisfy the reduced wave equation (~+ k 2

)UI ,2 = 0, the 
radiation condition at infinity, the boundary condition 

au 
ut = 0, ay2 = ° on the half-plane, (2.2) 

and the edge condition (see Ref. 4, p.45) 

ut(r,cp)=O(yl/Z), uz(r,cp)=0(1), r-O. (2.3) 

According to Ref. 2 [Sec. 11. 7, Eq. (20)] or Ref. 5 
[Eqs. (8.46) and (8.68)], the total fields uI, Uz are given 
by the exact representation 

(2.4) 

where the upper (lower) sign corresponds to 1~ (u2). 

function J(x, y) in (2.4) is defined by 
The 

. f ~ exp(iJ.!2) 
J(x,y)=exp(ty) (2+2 )ll2 d J.!, 

-x J.! Y 
(2.5) 

and the detour parameter H ~') of the incident (reflected) 
field is defined by 

~= (r+d - r l )I/2 sgn[cosi(cp - $1)] 

( 
4 rd )1/2 1 

= r+d+r! COS2(cp-n), (2.6a) 

( = (r + d - r_ l )! /2sgn[cosi(cp + $1)] 

( 
4rd )1/2 1 

= r+d+r_
l 

COS2(cp+n). (2.6b) 

Near the edge r= 0, the total fields in (2.4) behave as 

(2.7a) 
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u2(r, cp) = Hr )(kd) + :l~r /2 exp(ikd) cosin cosicp + O(r), 

(2.7b) 
which comply with the edge condition (2. 3). 

Now let us consider the diffraction of an E-polarized 
wave due to an anisotropic line source and given by 

(2.8) 

Because aut/ax satisfies the boundary condition on the 
half-plane x -"" 0, y = 0, it would appear that the total 
field for the present problem is simply given by aut/ax, 
where ul is given in (2.4). However, such a result is 
incorrect since oul/ax does not satisfy the edge condi
tion: generally aut/ax = O(r-l/Z ) [compare with (2.7)], 
whereas the correct total field should be O(yl /2) near 
the edge r= 0. Therefore, aut/ax must be supplemented 
with an additional term that should satisfy the reduced 
wave equation, the radiation condition, and the boundary 
condition on the half-plane, and should compensate the 
edge Singularity of aut/ax. It is easily found that the 
additional term is a multiple of 

(1) (k ) . 1 .( 2)1/2 exP(ikr) . I 
Hl/2 r Sln2CP = - t rrk :;;t 12 Slnzcp. (2.9) 

The total field VI due to the incident field in (2.8) is now 
given by 

( 
rh) _ oUl +A exp(ikr) . l.rh 

Vl r, '!' -ax I 1"112 Sln2'!', (2.10) 

where the constant Al is to be determined by the require
ment that at the edge r= 0, the r-l/Z_singularities in the 
two terms in (2.10) should cancel. It can easily be shown 
that (2.10) satisfies all conditions for the present dif
fraction problem. Hence, by relying on uniqueness, 
(2.10) does represent the exact total field due to diffrac
tion of the incident field in (2.8). 

Next consider the diffraction of an H-polarized wave 
due to an anisotropic line source and given by 

(2.11) 

By employing a similar argument as before, it is found 
that the total field Wz in this case is given by 

_ aUl exp(ikr) l. 
wz(r,cp)-Ty+B2 :;;t12 COS2CP, (2.12) 

where ut is given in (2.4). Because UI = ° on the half
plane, the tangential total electrical field at x -"" 0, y = 0, 
which is proportional to 

also vanishes on the half-plane. The constant B2 in 
(2.12) can be determined by enforcing the edge condi
tion w2(r, cp) = 0(1) as r - 0. 

Guided by the two results in (2.10) and (2.12), we can 
state the following theorem for the differentiation of so
lutions to the half-plane diffraction problem sketched in 
Fig. 1. 
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Theorem: In the two-dimensional diffraction at a per
fectly conducting half-plane x,,; 0, y = 0, let ul = Ez (u2 
=Hz ) be the total field due to the incident E-polarized 
wave (H-polarized wave) u l

• In a similar notation, let 
Vl (v2) be the total field due to diffraction of ou l lox, and 
let w1 (w2) be the total field due to diffraction of ou l loy. 
Then 

_ OUl + A exp(ikr) . !.A, 
V 1 - ax 1 J:I/2 sm2'!", (E-polarization), (2. 13a) 

(H-polarization), (2. 13b) 

_ oU2 + B exp(ikr) . !.A, 
Wl -ay 1 J:I /2 sm2'!", (E-polarization) , 

(2. 14a) 

(H - polarization), 

(2. 14b) 

where the constants A 1 , A 2, B 1 , and B2 are determined 
by the requirement that the total fields should be free 
from the r-1 /2- s ingularity at the edge r= 0, 

Three remarks are in order: (i) The above theorem 
is valid not only for the incident field u l given in (2.1) 
but also for a general incident field as, e. g., in (1. 1). 
[See the application in connection with (4.8).] (ii) The 
theorem can be extended to higher-order derivatives. 
In fact, one such example will be worked out in the next 
section. (iii) For the special case of plane wave inci
dence, the present theorem was established by 
Bouwkamp6 in 1946. As Bouwkamp points out, a quali
tative version of the theorem was already enunciated by 
Rayleigh in a paper of 1897. 

3. DIFFRACTION OF LOWER-ORDER MULTIPOLE 
FIELDS DUE TO A LINE SOURCE 

In this section, we consider the diffraction problem 
sketched in Fig. 1 when the incident field is an E-polar
ized wave given by (1.1b) with n= 1 and 2. By use of 
the theorem in Sec. 2, we determine the total field solu
tion and this solution is specialized for the case n = 0+, 
that is, the line source is located on the upper surface 
of the half-plane. Finally, we derive a simple closed
form result for the total field on the shadow boundary 
¢ = 17. The diffraction problem for an incident field 
(1. 1) with general n will be discussed in Sec. 4. 

First, consider the diffraction of the E-polarized wave 
as given in (1. 1b) with n= 1, viz., 

u
l
(rl' ¢1) = Hi1)(kr1) sin¢l' (3.1) 

If one uses the relation 

o . 0 1 0 
-=-sm¢l--coS¢l--, 
oy or1 r 1 0¢1 

(3.2) 

(3.1) may be rewritten as 

I( ) _ 1 0 (1) 
U rl> ¢1 -'k oy Ho (kr1)· (3.3) 

According to the theorem in Sec. 2, the resulting total 
field u is found to be 

_ 1 (ou2 exp(ikr). 1 ) 
u(r, ¢) -'k ay + Bl ;yt 72 sm2</> , 
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where u2 is given in (2.4). To determine Bl> the be
havior of ou210y near the edge should be examined. With 
the help of (2. 7b), we have 

oU2 _ 2 exp(ikd) !.n -1/2 . 1.A, + 0(1) _ 0 (3 5) ..,,-- . d172 COS2 •• r Sln2'!" ,r.. 
uy 17Z 

The edge condition requires that u in (3.4) must be free 
from the r-1/ 2-singularity, In view of (3.5), this require
ment is satisfied if Bl assumes the value 

B 
_ 2i exp(ikd) 1. -

1 -n (j172 cos2lt. (3.6) 

Thus, (3.4) and (3.6) give the exact total field (valid for 
all nand ¢ between 0 and 217) due to diffraction of the 
incident field (3.1). Specializing the solution in (3,4) for 
the case n = 0+, we have 

4 0 ( . f ~ exp(iJ.L2
) ) 

u(r, ¢) = i17k oy \exp(zkr1) ..",1 /2~ (J.L2 + 2kr
1

)1l2 dJ.L 

+ 2i exp[ik(r + d)] . 1.A, 
17k (rd) 11 2 Sm 2'!", (3.7) 

where ~ = (r + d - rl)l /2sgn(cosi¢). Along the shadow 
boundary ¢ = 17, it is easily shown that 

ar: a ~ ( d ) 1/2 
ayl=O, oy= 2r(r+d) at ¢=17. (3.8) 

Using (3.8) in (3.7), we obtain 

• 1 2r1 /2 
u(r, ¢ = 17) = exp[z(kr + kd + 2 17)] 17k(r + d)d1 / 2 . (3.9) 

This is the exact total field on the shadow boundary due 
to the incidence of (3. 1) with n = 0+ 0 When (3.9) is com
pared with the asymptotic solution in (I. 3. 9), they 
coincide. 

Next consider the diffraction of the E-polarized wave 
given by 

u l (rl' ¢1) =H~1)(krl) sin2¢1' (3.10) 

If one uses (3. 2) and the relation 

a a 1 0 
-;- = - COS¢l-~ - + sin¢l --a A, , 
uX ur1 r 1 '1"1 

(3.11) 

(3.10) may be rewritten as 

I ( ) _ 2 0
2 

(1)( ) 
U rl> ¢1 -k2oxay

H o kr1 . 

On extending the theorem in Section 2, it is found that 
the total field u in the present diffraction problem may 
be expressed as 

_ 2 [02U2 exp(ikr). "-
u(r'¢)-k2 oxoy+A3 ;yt72 sm2¢ 

+ B exp(ikr) (1 -~) . ~A,J 
3 ;yt /2 ikr sm2'!" , (3.13) 

where u2 is given by (2.4), and the constants A3 and Bs 
are to be determined by enforcing the edge condition, 
The second and third terms in (3.13) are multiples of 

(3. 14) 

respectively; these terms do satisfy the wave equation, 
the radiation condition, and the boundary condition on 
the half-plane. Near the edge r = 0, it can be shown that 
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(J2U2 _ 1 exp(ikd) ~ -t -3/2 . 2,+. + k exp(ikd) 
(Jx(Jy-rri {j172 COS2~ r Sm 2'/" rr dl/2 

x (1- ik~ ) cos%n r-1 
/2 sin~¢ + 0(1), r - O. (3.15) 

The edge condition requires that 11 in (3.13) must be 
free from the r-3

/
2 -singularity and the r-1/ 2-singularity 

near the edge. These requirements determine A3 and 
B3 with the results 

A - k exp(il?d) (1 _1_) .:!n 
3 - - rr dl/2 - il?d COS2 , (3. 16a) 

(3. 16b) 

Thus, (3. 13) and (3. 16) give the exact total field (valid 
for all nand ¢ between 0 and 2rr) due to diffraction of 
the incident field (3.10). Specializing this solution for 
n = 0+ and ¢ = 7T, we obtain 

u(r, ¢ = 7T) = exp[i(kr + kd + 7T) 1 
4yl/2 [ (r+3d) ] 

x rrk (r+d)d172 1+i 2kd(r+d) . (3.17) 

This exact solution again verifies the asymptotic solu
tion derived by the uniform asymptotic theory and given 
in (1. 3. 9). 

The above procedure can be continued to derive the 
total field due to diffraction of a higher-order multipole 
field in (Lib). However, this is not necessary. In the 
next two sections, we will derive a recurrence relation 
for the total field on the shadow boundary, due to the 
incidence of a general multipole field, and obtain the 
desired field solution by solving the recurrence relation. 

4. DIFFRACTION OF A GENERAL MULTIPOLE 
FIELD DUE TO A LINE SOURCE 

This section deals with the diffraction of the line
source field (1. 1) with general n by the half-plane x <:; 0, 
y = 0 (Fig. 1). The line source is located on the upper 
surface of the half-plane (n = 0+) and the incident field 
(1. 1) is an E-polarized wave. We will determine the 
resulting total field on the shadow boundary ¢ = 7T. 

Consider first the case of an incident field (1. la) which 
is symmetric with respect to the plane y = 0, Then the 
fields produced by the source at (x = - d, y = 0+) and its 
image at (x = - d, y = 0-) cancel exactly. Hence, the total 
field is identically zero everywhere. This result veri
fies the asymptotic solution derived by the uniform 
asymptotic theory and given in (I. 3. 11). 

Next consider the diffraction of the asymmetric E
polarized wave as given in (1. 1b), viz., 

u~(rl' ¢1) =H~l)(krl) sinn¢l, n== 0,1,2, .... (4.1) 

Let the resulting total field on the shadow boundary ¢ 
= 7T be denoted by 

u(r, ¢=7T)=gn(r) for n=o+, 

then obviously 

go(r) = 0 

and, according to (3.9) and (3.17), 
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(4.2) 

(4.3) 

2 yl /2 
gl (r) = exp[i(kr + kd + 7T/2) 1 rrk dl72(r + d) , (4.4) 

g2(r) = exp[i(kr + kd + rr) 1 

[
4 yl/2 2iyl/2(r+3d)] 

X 7Tkd172(r+d) +1fk2d372(r+d)2 . (4.5) 

We will derive a recurrence relation for the functions 
{gn}. For this purpose, we observe that 

= - ~kU~_l + ~kU~+l' n= 1,2,3,"', (4.6) 

where (3.11) and some well-known recurrence relations 
for the Hankel function have been used. In view of (4.6), 
the total field on the shadow boundary, due to the inci
dent field (Ju~/ax, is then equal to 

(4.7) 

On the other hand, referring to the theorem in Sec. 2, 
the total field is also given by 

a () C exp(ikr) - '() C exp(ikr) (4.8) 
axgnr- n ?72 -gnr- n ;;72 

Here, the constants {Cn} are determined by the require
ment that the r-1I2-singularity in the total field at the 
edge should vanish (edge condition); hence, 

C n = lim yl 12g~(r). (4.9) 
roO 

By equating (4.6) and (4.8), a recurrence relation is 
obtained, 

(4.10) 

It has been verified that go, gl, and g2 in (4.3)-(4.5) do 
satisfy (4.10). The field {gJ are now completely speci
fied by (4.10) and the "initial values" go and gl in (4.3) 
and (4.4). 

We will now solve the recurrence relation in (4.10). 
Because gn obviously consists of n terms of order k-P, 
p = 1, 2, ... ,n, we can introduce the ansatz 

gn(r) = 2i exp[i(kr + kd + ~n7T) It (ik)"PAnpGp(r), (4,11) 
7T p4 

where the coefficients {Anp} and the functions {Gp} are to 
be determined. The ansatz is rather special 
in that {Gp} do not depend on n, i. e., all {g,,} are ex
pressed in terms of the same set of {Gp}. This choice 
is suggested by (4.4) and (4.5) where the leading terms 
contain the same function of r, Without loss of generality 
we may assume 

(4.12) 

A. Determination of Gn 

A comparison of (4.4) and (4.5) with (4.11) yields 
immediately 

yl 12 
G1 (r) = d172(r + d) , (4.13) 
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By introducing the notation 

r p= lim yl/2G;(r), (4.14) 
T~O 

Cn in (4.9) becomes 

2in+l _n, 
Cn=-exp(ikd) 'D (ik)-Pr pAnp. 

rr p-l 
(4.15) 

Inserting (4.11) and (4.15) into (4.10) and equating cor
responding terms containing the same power of k-l , we 
obtain 

An+l,pGp(r) = -An_l,pGp(r) + 2AnpGp(r) 

+ 2An,p~l[G;_l(r) - rP-l r -1I2 ]. (4.16) 

In (4.16) we set p = n + 1; then, in view of An+l,n+l =Ann 
= 1, and An_l,n+l =An,n+l = 0, we have 

Gn+l(r)=2G~(r)-2rnr-l/2, n=I,2,3,···. (4.17) 

This equation recursively defines the functions {Gn}. It 
has been verified that G2 in (4.13) does satisfy (4.17). 
From (4.13) we may deduce the series expansions 

Gl(r) =.!L5 (_I)Q(rld)q+l/2, 
dQ=o 

G2(r) =~E (- I)Q(q + ~)(rld)q-l/2 

(4. 18a) 

(4. 18b) 

which are valid for 0 -'S r < d. Then from (4.17) it is 
easily found that 

(4.19) 

which is valid for O-'S r<d. Starting from (4.19), Gp(r) 
may be written as a hypergeometric function (see Ref. 
7, Chapter 15), 

G ( ) = (_ I)P-l (2p - I)! 1 (~)l/2 
pr 2P-l(p_l)!dPd 

xF(p +~, 1; 1; - rid). (4.20) 

Then, by use of a well-known integral representation 
for the hypergeometric function [Ref. 7, Eq. (15.3.1)], 
we obtain 

G (r) = (_ I)P-l (2p - I)! 
p 2P(P-l)! 

X foT (r+d - t)-P-l/2,-l/2dt, P = 1, 2, 3, .... 

(4.21) 

The latter representation for Gpo which is an analytic 
continuation of the one in (4.19), is valid for all r be
tween 0 and 00. Alternatively, by use of a linear trans
formation formula for the hypergeometric function [Ref. 
7, Eq. (15.3.12)], Gp can be reduced to 

Gp(r) = (_ I)P~l2P-l(p _ I)! (~y 12 

p--~ (2q)! 1 
x~o23'l(q!)2dQ(r+d)P~' p=I,2,3, .. ·• (4.22) 

The result in (4.22) is the desired final expression for 
the functions {Gp}. 
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B. Determination of Anp 

The use of (4.17) in (4.16) leads to 

(4.23) 

which can be solved in a standard manner subject to the 
side condition (4.12). The result is 

A np =(n+p -l), (4.24) 

\2P -1 

where ( .) denotes the binomial coefficient. 

In summary, the exact total field on the shadow bound
ary ¢ = rr, due to diffraction of an incident E-polarized 
wave in (4.1) with n = 0+, is given by an n-term sum, 
namely, 

gn(r) = 2i exp[i(kr + kd + ~nrr)] 
rr 

xB (~p+! ; 1) (ikj-PGp(r), n = 1,2,3, ... , (4.25) 

where {Gp} are given in (4.22). The first two terms of 
(4.25) are 

. 1 2m.l/2 
gn(r) = exp[t(kr + kd + anrr) ]rrk(r + d)dll2 

. [1 + . (n
2 

- l)(r + 3d) + O(k-2)] 
t 6kd(r +d) , (4.26) 

which agrees with the asymptotic solution in (I. 3. 9), de
rived from the uniform asymptotic theory. For the case 
n= 1 (n= 2), there is only one term (two terms) in (4.25); 
thus, the asymptotic solution in (I. 3. 9) becomes exact 
in these cases. 

5. ALTERNATIVE SOLUTION OF THE RECURRENCE 
RELATION 

For the diffraction of the E-polarized wave given in 
(4.1) with n = 0+, the resulting total field on the shadow 
boundary is denoted by gn(r) as indicated in (4.2). We 
will now present an alternative method for solving the 
recurrence relation for {gJ in (4.10), or 

2 I 2Cn exp(ikr) 
gn+l(r)=gn_l(r)+kgn(r)-T }'l12 , n=I,2,3, .. ·. 

(5.1) 

In this method, the integral in (4.21) is obtained in a 
more natural manner. 

Consider first the constants {Cn} as defined by (4.9). 
From (4.4) and (4.5), it may be shown that Cl and C2 

may be expressed in terms of Hankel functions of half
integral order and of argument kd: 

Cl=:k ex;(~:d) -(:rry/2[H~Wkd)+iHm(kd)], (5.2a) 

C 
_ 2 exp(ikd) 3i exp(ikd) 

2-- rrk rFI2 -7fk'l- (j512 

= (2~ ) 1/2 [H~1/~ (kd) + iH~Wkd)]. 

Guided by these results, it is conjectured that 

Cn= (- l)nG.rr) 1I2[H~~l;2(kd) +iH~~l;2(kd)]. 
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It has been verified that this conjecture also holds true 
for C3 and C4 • 

Furthermore, observe that (5.1) and (5.3) remain 
valid when n is a negative integer. As a matter of fact, 
for negative n, the incident field in (4. 1) becomes 

U~n(rl' ¢l) =H~~)(krl) sin(-n¢l) = (_1)n+lu~(rl' ¢l)' (5.4) 

Thus, the associated total field g-n and constant C_n 
satisfy 

g_n{r)=(_1)n+lgn{r), C_n=(_1)n+lc n. (5.5) 

It is easily seen that (5. 1) and (5.3) are consistent with 
the symmetry relation in (5.5). 

The recurrence relation (5.1), valid now for all posi
tive and negative integer n, is solved next by a formal 
generating-function technique. Introduce the generating 
function 

~ 

F(r, e) = ~ gn(r) exp{in8), (5.6) 
n=_-o 

then (5.1) implies the following differential equation for 
F: 

a .. exp(ikr) 
orF{r, e) +zksmeF{r, e) =c(e) r172 , (5.7a) 

where 

'" 
c(e) = B Cn exp(ine). (5.7b) 

n=_.o 

The differential equation (5. 7) is solved by variation of 
parameters. Since F(r, 8) = 0 at r= 0 (edge condition), 
we obtain the solution 

F{r, e) = C( 8) JOT exp{ik[t - (r - t) sine]}t-l 12 dt. (5.8) 

Using the well-known generating function for Bessel 
functions [Ref. 7, Eqs. (9.1.42) and (9.1.43)], one has 

'" 
exp[-ik(r-t)sine]= B Jp[k(r-t)]exp(-ipe) (5.9) 

p=_ee> 

and (5.8) can be rewritten as 

~ '" 
F(r, e) = ~ Co exp(iq8)"£ exp(- ipe) 

q=_.o p=_110 

(5.10) 

Comparing (5.10) and (5.6), we immediately deduce 
that 

~ 

gn(r) = L Cp+n JOT Jp[k(r - t)] exp(ikt)t-l 12 dt. 
/>= .. 00 

(5.11) 

Substitute the conjectured values (5.3) for Cp+n into 
(5.11), then by use of the following identities [See Ref. 
7, Eq. (9.1.79)]: 

'" L (-1)PH~~~+1/2(kd)Jp[k(r-t)] =H~~lI2[k(r+d-t)], 
p=_oo 

(5.12) 

'" 
~ (- 1)PH~~~_1 12{kd)Jp[k(r - t)] = H~:l 12[k{r + d - t)], 

/>=-11() 

(5.13) 

(
rrk)1/2 rl 12 exp(ikt) = i"2 HP/~{kt), (5.14) 
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we obtain the desired solution for gn(r), namely, 

gn(r) = t(- l)nik JoT{H~~i 12[k(r + d - t)] 

+ iH;;:'1 12[k(r + d - t) ]}HP/2(kt) dt, n = 1,2,3, .... 

(5.15) 

The result in (5. 15) is an exact representation of the 
total field on the shadow boundary. The derivation of 
(5.15) is based on the conjectured values (5.3) for {C.} 
and a formal generating-function technique. The con
vergence of the series involved and the interchange of 
the order of summation and integration were not seri
ously studied. Thus, (5.15) requires the following addi
tional verification: 

(0 Determine Cn from (4.9) and (5. 15), then the con
jectured value (5.3) is precisely recovered. 

(ii) By direct substitution, the solution in (5.15) has 
been shown to satisfy the recurrence relation (5.1) 

This verification shows that gn is given by the exact 
representation (5.15). 

To derive a more explicit solution from (5. 15), we 
may express the Hankel function in terms of elementary 
functions, 

H~~l 12(Z) = (rr:) 112 exp[i(z - tnrr - trr)] 
n, (n +p)! (_ 1)P 

x~o (n - p) !p! (2iz)P 

As a result, (5. 15) is reduced to 

2i [. I] _n (n + p - 1)! 
gn(r)=-exp t(kr+kd+znrr) f..j ( _ )'(P_1)1 

7T p=l n p. . 

x (_ 1)P-l(2ik)-P 10 r (r + d _ t)-P-l 12rl 12 dt. 

With the help of the representation (4.21) of Gp(r), 
(5.17) may be rewritten as 

gn(r) = 2i exp[i(kr + kd + tnrr)] rr 
x t (n + p - 1 )(ik)-PGp(r) 

p=l 2p - 1 

(5.16) 

(5.17) 

(5.18) 

which agrees with (4.25), the solution obtained by the 
first method. 

6. DISCUSSION AND NUMERICAL RESULTS 

In the present paper, the exact solution to the diffrac
tion of a line-source field by a half-plane is studied by 
analytical methods. When the incident field given in 
(4.1) is an E-polarized wave and is due to a line source 
located on the upper surface of the half-plane, the ex
act total field on the shadow boundary is given in (4.25), 
which is an n-term sum (n is an index of the incident 
field), or in (5.15), which is a finite integral. The first 
two terms of (4.25) agree with the asymptotic solution 
determined by the uniform asymptotic theory in Part 1. 

For a given incident field (fixed n), the total field in 
(4.25) or (5.15) depends on two parameters d and r, 
which are the distances from the edge to the source, 
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FIG. 2. Normalized total field on the shadow boundary due to 
an incident field (4.1) from the line source on the half-plane. 
g. is defined by (4.2) and (6.3), and it is calculated from (4.25) 
and (4.22) with one, two, ... , or n terms in the sum. 

and to the observation point, respectively. For the ex
treme case (rid) - 0 (near field or faraway source), it 
is found from (5.15) that 

(
2kr)1/2 

R.(r) = (- i)' 1T 

x exp(ikr)[H~~i /2(kd) + iH~:i dkd) ][1 + o(~) ] 
4i (r)1I2 = "iT exp[i(kr + kd + ~n1T)] d 

x' (n+p-1)! (_l)P-l[ (r)] (r) ~(n-p)!(p-1)!(2ikd)6 1+0 d ' d -0. 

(6.1) 

For the other extreme case (dlr) - 0 (far field or nearby 
source), it can be shown from (4.22) and (4.25) that 
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FIG. 3. Same as Fig. 2 except that n ~ 4. 

4i (d)1/2 R.(r) = "iT exp[i(kr + kd + imT)] r 

n (n+p-1)! (_W-1 

xE (n - p)! (p - i)! (2p - 1) (2ikd)P 

(6.2) 

The n-term sums appearing in (6.1) and (6.2), are both 
polynomials in inverse powers of kd. Thus, the use of 
one or two "dominant terms" in these two extreme cases 
can give good results only if kd» 1, and its accuracy is 
independent of kr. 

In Figs. 2 and 3, we fix kd= 27T (or d= 1A) and display 
a normalized total field 

gn(r) = exp[ - i(kr + kd + ~n7T) k.(r) (6.3) 
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as a function of kr for two incident fields n = 2 and n = 4; 
ft. is calculated from (4.25) and (4.22) with one, two, 
•. 0, or n terms in the sum, where the one with n terms 
is the exact solution. Since kd = 27T is relatively small 
and n = 4 corresponds to a rapidly varying incident field, 
the curves calculated with one or two terms in the sum 
in Fig. 3 do not converge well to the exact solution. In 
particular, we note in Fig. 3 that the curves calculated 
with one term show a reasonable magnitude but the phase 
is far off. 

The poor convergence mentioned above becomes less 
serious as kd is increased, as indicated in (6. 1) and 
(6.2). In Fig. 4, we reconsider the case presented in 
Fig. 3 but with kd = 67T (triple the previous value). The 
curves calculated with two terms already give good re
sults in both magnitude and phase. 
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Some aspects of the N-representability problem in finite 
dimensions. I. Operator endomorph isms which induce 
necessary conditions 
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The connection between operator endomorphisms and conditions for N-representability is established. The 
sets N Nand 5 N are defined as the sets of operator endomorphisms which induce necessary conditions and 
sufficient conditions respectively. A detailed characterization of N N is presented. 

1. INTRODUCTION 

The Hamiltonian describing the dynamics of an elec
tron cloud of a molecule in the Born-Oppenheimer 
approximation is of the form 

N N 

H=2]H1(i) +'i]H2(ik). (1.1) 
i =1 i <.k 

The operator is define!! on some dense subspace.Dof the 
lY-fold tensor product HN of a separable Hilbert space 
H which comprises all possible pure states of one elec
tron and therefore is called the" one electron" or 
"orbital" space. 

The possible energies which the isolated electron 
cloud is capable of are identical with the numbers con
tained in the spectrum of ,!he cOl1!Pression1 of H to the 
antisymmetric subspace H ~ of HN. Thus the ground 
state energy Eo is given by 

Eo = inf tr(HD), (102) 

where f5 varies over all positive trace class operators 
of trace 1 whose range is contained in D n ii': . 

Let us call a finite dimensional subspace fI c;;: Ii 
admissible iff HNc;;:D. Throughout this paper we assume 
that a fixed admissible subspace H c;;: fi of dimension 
r> 3 has been chosen. For 1.; p.; N.; r let 5 P be the set 
of all Hermitian linear operators of Rp whose range is 
contained in H~ and let (JP denote the subset of all posi
tive operators (belonging to 5P) of trace 1, i. e. , 

pP ~{D E: 5p l D? 0, tr(D) = 1}. (1. 3) 

(Here ~ denotes definition) 

An element DE: pP is called a p density operator 
(whose one range is contained in the given admissible 
subspace of the orbital space h)' Then clearly we have 

Eo'; inf tr(HD). 
DE:pN 

(1. 4) 

Formula (10 4) will serve us as a basis for obtaining 
upper bounds to the ground state energy, Eo, for the 
system. 

To p£oceed further let us introduce the projections 
~ and N corresponding to the subspaces HP and fi~ of 
HP, respectively. Clearly they commute and AP ~jPAP 
is the projection corresponding to H~ . We may write 
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Furthermore, we have 

AN HAN =AN(K0 IN-P)AN, (1. 5) 

where 

(1.6) 

is the operator obtained from the" reduced Hamiltonian"2 
by multiplication on both sides by A 2 • In the sequel we 
shall refer to K as the "truncated reduced Hamiltonian. " 
Obviously K E: 52. If we introduce the (p, N)-expansion 
operator, 

r::5 P-sN,3 
devined byr:(B) =AN(B0 IN-P)AN, BE:5 P, (1.5) can be 
rewritten as 

ANHAN =r~(K). (1. 5') 

Clearly ~ is a real Hilbert space under the inner 
product 

(D, B) .... (DIB) ~tr(DB), D, BE: sP, 

whose dimension is given by (;)2, where r denotes the 
dimension of H. 

The adjoint operator of the (p, N)-expansion operator 
relative to this inner product is the (N,p)-contraction 
operator L~. 2 Thus the defining equation of L1, is given 
by 

(Lt(D) I B) ,=(DI r:(B), DE: sN, BE:~. 

More explictly, L~ is given as the partial trace of D 
over the last N - P factors in the tensor product. Let 
PN be the image of pN under Lt;,. An element of P1, is 
called an N-representable p-density operator (whose 
one range is contained in H). We have the following 
lemma, crucial to our reasoning: 

1.1 Lemma: Eo';infDU:;,(KID). 

Proof: For DE: pN we have 

tr(HD) =tr(HANDAN) ,=tr(ANHAND) = (AN HAN I D) 

= (r~(K) I D) = (KI L~(D). 

Combining this insight with formula (1. 4) we obtain 
Eo'; inf tr(HD) '= inf (KI L~(D) 

DE: pN DE: pN 

= inf (KID). 
DE: p» 
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The formula of Lemma 1. 1 is not very practical be
cause a convenient characterization of p~ is unknown, 
but the knowledge of any subset of p~ will provide us 
with an upper bound to Eo. Such a subset is given by 
the singleton {(~)-lA2J-. In Part II of this paper we exhibit 
some other less trivial subsets of p~ as the images of 
p2 under certain maps called operator endomorphisms. 
In Part I we focus on necessary conditions for N rep
resentability induced by such operator endomorphisms. 

2. OPERATOR ENDOMORPH ISMS AND CONDITIONS 
FOR N REPRESENTABILITY 

2.1 Definition: Let T be a linear map of S2 into itself. 

(i) T is said to induce a sufficient condition for N 
representability iff T( P2) <;::, P~. 

(ii) T is said to induce a necessary condition for N 
representability iff T( P~) ~ P2. 

(iii) T is called order preserving iff T( P2) I:: (J2. 

The motivation for this definition is clear. If D is any 
density operator and T induces a sufficient condition 
for N representability then T(D) is N representable and 
the lowest eigenvalue of T* (K) is an upper bound to the 
ground state energy Eo. Note that T* is the adjoint 
operator to T. Indeed, 

Eo~ inf (KID)= inf (KI T(D) 
D E.T (p2) DE. P 2 

= inf (T* (K) I D) = lowest eigenvalue of T* 0 
DE.p2 

Suppose T induces a necessary condition for N rep
resentability. Then T(D) '" 0 for every N-representable 
density operator and the lowest eigenvalue of (T*)-l(K) 
(we assume T is invertible!) is a lower bound to the 
lowest eigenvalue of the truncated Hamiltonian which 
in turn is an upper bound to the ground state energy Eoo 
Indeed, 

Eo ~ inf (HI DN) = inf (KI D) 
DNEPN DE.P~ 

? inf (KI D) = inf (KI T-1 (D) 
DE.T-1\P2) DE.p2 

= inf (T*-l(K) I D) = lowest eigenvalue of T*-l(K). 
DEP2 

Also notice the following fact which we shall exploit 
later on in this paper: If T1 induces a sufficient condi
tion for N representability and if T2 induces a neces
sary condition for N representability then the composite 
transformation T20 T1 is order preserving. 

Finally we remark that for 2 ~ N ~ (r - 2), p2 and p~ 
span ~ as a linear space. This implies that if a linear 
map T of ~ into itself has any of the three properties 
listed in Def. 20 1, it preserves the trace. 

The most interesting and accessible linear transfor
mations of ~ are the operator endomorphisms. Let 
U =U(H) be the group of all u.!,1itary transformations of 
the admissible subspace H I::H. U acts in a natural way 
on HP and therefore also on sP (by similarity transfor
mation). An operator homomorphism is a linear map 
between two carrier spaces of representations of U 
which commutes with the action of IJ. For example, the 
(N, p)-contraction Lt and the (p, N)-expansion operator 
r; are such operator homomorphisms. Since pN is 
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invariant under U and the (N, 2)-contraction is an opera
tor homomorphism, p~ is invariant under the group U. 
Similarly if T is an operator endomorphism of S2 (i. eo, 
an operator homomorphism of S2 into itself) which 
carries p2 into p~, then the image T(P2) will be a con
vex subset of p~ which shares with p~ the property of 
being invariant under U. This is one reason why the 
operator endomorphisms are of particular interest to 
us. 

The following proposition asserts that the set of all 
operator endomorphisms of S2 constitutes a three
dimensional commutative algebra over the field R of 
real numbers. We restrict ourselves to the case where 
the dimension r, of our basic admissible subspace H 
of orbital space, satisfies the inequality 

r~dimH > 3. 

202 Proposition: (i) The algebra!! of all operator 
endomorphisms of S2 constitutes a three-dimensional 
commutative algebra over R. 

(ii) A linear map T of S2 into itself belongs toll iff 
it has the form 

D- T(D) = Q'tr(D)A2 +(3(D1/\ I1) + yD. 

[Here we used the abbreviations D1 for L~(D) and D1/\ I1 
for A2(D10 i)A2.] 

Proof: S2 is the direct sum of three inequivalent 
irreducible subspaces under U, 

(201) 

Here (A2) stands for the one-dimensional subspace 
spanned by A 2

, and K stands for the kernel of L~. Their 
respective dimensions are given by 1, r2 - 1, and 
(~)2 _ y2. Part (i) of the proposition follows at once from 
Schur's lemma. 

In order to prove (ii) let DE. S2 be arbitrary. The 
three irreducible components of D are given by 

Do = (~J-1 tr(D)A2, 

D1 = 4(r - 2J-1[D1 /\ I1 _ r-1 tr(D)A 2], 

D2 =D - 4(r- 2)-1(D1/\ I1) + (r~ If tr(D)A2. 

(2.2a) 

(2.2b) 

(2.2c) 

Here Do E. (A2), D2 E. K, and therefore D1 ~ D - Do - D2 
E. (A 2)Lt:jK. 

tIn order to verify that D2 E.K notice that 

L~(D1/\ i) =[(r- 2)/4]D1 +ttr(D)i.} (2.3) 

Now let TE.ll be arbitrary. We have 

T(D) = EDo + AD1 + /lD2 

for some triple (E, A, J1) E. R3. Substituting the expres
sions (2.2) for Do, D1, and D2 we obtain 

(2.4) 

where 
2 

Q'= r(r- l)(r- 2) [(r- 2)E + rJ1- 2(r-l)A], (2.5a) 

4 
{3= (r- 2) (A- J1), (2.5b) 

y= J10 (205c) 
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Conversely, suppose T has the form of Proposition 
202 0 Then 

(2.6) 

(Id = identity on ~), which makes it obvious that T is an 
operator endomorphism. 

2. 3 Corollary: If T is an operator endomorphism of 
~, then T is self-adjoinL 

Proof: Clear from formula (206). 

2.4 Corollary: The algebraA of all operator endo
morphisms is isomorphic to the algebra of all diagonal 
3X 3 matrices over lR. 

Proof: Indeed the map T - diag(€, A, JJ.) is such an 
isomorphism. 

Combining the insight expressed in the paragraph 
following Definition 2.1 with Corollary 2.3 we obtain 
the following recipe. 

Recipe: 

(i) If TEA is such that T( P~) <: pz, then the condition 

T(D) >- ° 
is a necessary condition for N representability. If, in 
addition, T is invertible then the lowest eigenvalue of 
r-1 (K) is a lower bound to the lowest eigenvalue of the 
truncated Hamiltonian (i. e., the compression of the 
Hamiltonian onto HN). 

(ii) If TEA is such that T( PZ) ~ P~, then the lowest 
eigenvalue of T(K) is an upper bound to the ground state 
energy Eo of the N-electron system. 

Here K stands for the truncated reduced 
Hamiltonian. Z 

This recipe suggests the introduction of the following 
sets: 

!YI ,!{ TEA I T( PZ) <: PZ)-, 

NN'!{TEA IT(P~)<:PZ)-, 

5 N~{TEA I T(PZ) <: P~}. 

(2.7a) 

(2.7b) 

(2.7c) 

In words:!YI is the set of all order preserving operator 
endomorphisms and IV Nand 5 N denote the sets of all 
operator endomorphisms which induce necessary condi
tions for N representability and sufficient conditions 
for N representability, respectively. 

!YI, N N, 5 N are convex subsets of the semigroupA 0 

of all operator endomorphisms which preserve the 
trace. It follows from Corollary 2.3 that an operator 
endomorphism T preserves the trace iff T(AZ) =Az and 
thus iff € = 1. Therefore, A 0 is isomorphic as a semi
group to the semigroup of all diagonal 2 x 2 matrices 
diag(A, JJ.). The above mentioned three sets therefore 
can be thought of as convex subsets of the (A, JJ.) plane 
[or (0:, (3) plane]. Note that the eigenvalues (€, A, JJ.) of 
the operator endomorphism T= T(o:, (3, y) are given by 

(r) r- 1 
€ = 2 0: + -2- (3 + Y, 

r- 2 
A=--i3+y, 

4 

(208a) 

(2.8b) 

[cf. (2. 5)], and therefore TEA 0 iff 

(r) r-1 20:+-2-(3+Y=1. (2.9) 

3. OPERATOR ENDOMORPH ISMS WHICH INDUCE 
NECESSARY CONDITIONS 

The following theorem gives a complete characteriza
tion of the set IV N in the case where rand N are even 
numbers. 

3.1 Theorem: Let rand N be even numbers satisfy
ing 2 ~ N ~ r - 2. 

(i) A necessary and sufficient condition for T( 0:, f3) 
EA 0 inducing a necessary condition for N representabil
ity is that 0:, {3 satisfy the following inequalities: 

0: >- 0, 

{3 >- - 2N0:, 
2 

(r +N - 1) 0: + (3 ~ -." 
r- "' 

2(r-N + 2) 
ro: + {3 ~ (r + l)(r- N) 

(301a) 

(3. 1b) 

(3.1c) 

(3.1d) 

(ii) IV N is the convex hull of the following four ex
treme points: 

(3.2a) 

QN(D) = \: N) _1 ~r(D)A2 _ 2N(D1 II 11) +(j~ , (3.2b) 

2 
BN(D) = (r-N)(r+ 1) [tr(D)A2

_ (N - 2)(D l 
II 11) 

- (N -1)D], (3.2c) 

CN(D) = (r-N~(r+ 1) [(r-N + 2)(Dl 
II 11) - (N -1)D]. 

(3.2d) 

Remark: If r or N is odd, the inequalities (3.1) are 
still sufficient conditions for the corresponding opera
tor endomorphisms to belong to N N' 

Proof: First we choose D=(~)-lpuIlPu, where u~H 
is an N-dimensional subspace and P u denotes the cor
responding projection. DEP~; in fact D=L~(P[U]) 
where P lU ] E PNis the projection onto the one-dimen
sional subspace of HN spanned by the Slater determinant 
[U] corresponding to U. Let {CP1, CP2"'" CPr}~H be an 
orthonormal basis such that {CP1, ••• , cP N} <: U. Then the 
matrix of T(D) relative to the derived basis 
{[cpt> CP2], ••• , [CPr-t> CPr]} of HZ is diagonal; more precisely 
it is given by 

JJ.=Y, (2. Bc) From the requirement that T(D) E pz we obtain im-
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mediately (3. 1a), (301b), and 

Q! +N-l i3 + (~r y~ O. 

Combining this inequality with (2.9) we obtain (3. 1c). 

Next let D = D2(ff) where f[ is an extreme geminal 
(cf. Colemanl .3). Then 

T(D) = (QI + ~)A2 + yD. 

Since 

I 
r-N+2 

(f[ Df[) = r(N _ 1) 

[cf. Coleman,4 formula (4.5)], we obtain 

I 
i3 r-N+2 o ~ (f[ T(D)f[) = QI + r + r(N _ 1) Y. 

Combining this inequality with (2.9) we obtain (3. 1d). 

The four extreme points of the convex set bound by 
the four inequalities of (3.1) are obtained by intersect
ing the four lines: 

QI=O, 

i3 =- 2NQI, 

2 
(r+N-1)QI+i3=--" , 

r-.i..'1 

2(r-.N+2) 
rQl+i3= (r+1)(r-N)' 

(3.3a) 

(3.3b) 

(3.3c) 

(3. 3d) 

The identity Id( QI = i3 = 0) is obtained by intersecting 
(3.3a) and (3. 3b); QN is obtained by intersecting (3. 3b) 
and (3. 3c). BN is the point of intersection of (3. 3c) and 
(3. 3d), and finally CN is the point of intersection of 
(3. 3d) and (3. 3a). 

The remainder of the proof consists in showing that 
the four operator endomorphisms of (3. 1) map P~ into 
P2. This is trivial for the identity and it is well known 
for QN and BN (cf. Coleman5

). In fact we have the 
following lemma. 

3. 2 Lemma: The map QN defined by (3. 2b) induces a 
bijection between P~ and P;_N' 

Proof: Let ~ be the particle-hole (or Poincare) 
isomorphism, i. e., the map of EB;=o st' into itself whose 
defining equation is 

(~(D)IB)=(;)tr(DIIB), D~st', B~sr-P, (3.4) 

where DII B=AT (D0 B)N. We assert that 

QN(D)=(L;_N'~)(DN), D~S2, (3.5) 

where if ~ sN is any preimage of D relative to the 
(N, 2) contraction, i. e., D = LnoN). Indeed for 
arbitrary B ~ S2 we have 

(L;_N' ~(DN) I B) = (c,.(DN) I q_N (B» 

= (~) tr(DN II B II jT-N-2) = (~), 

(r';,,+2(DN liB) II') = (~)(N: 2) -I tr(DN 
II B) 

= t~ 1-1 
(N; 2) tr[AN+2(DN® B)]. 
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Now using Sasaki's formula, 2 

(N; 2)A N+2 =A N ® A2 [IN+2 _ 2N(13) + (~) (13)(24)] A N0 A2, 

we obtain 

(L;_N' ~(DN) I B) = (r ; N) -I [tr(D) tr (B) 

- 2N tr[ L~ (D)L~ (B)] + (~) tr (DB)] 

= t~ Nt[tr(D)(A2 I B) - 2D(D1
1I pIB) 

+ (~(DIB)J 
=(Q N(D) I B). 

B being arbitrary this establishes formula (3.5). 
Formula (3.5) shows that if D ~ p1, then QN(D) ~ P;_N 
since in this case the preimage DN can be chosen to 
belong to PN. 

From (2.9) we obtain that the eigenvalues of Q N are 
given by 

N (r-N)-I(N) x=- r-N' Jl= 2 2 . (3.6) 

Thus for 2 ~ N ~ r - 2, Q N is invertible and by formula 
(3.6) 

(3.7) 

The last formula shows that QiJ maps P;_N into p1 and 
therefore QN induces a bijection between p1 and P;_N. 

Remarks: (1) The second quantization version of 
this lemma has been proven by Erdahl. 6 

(2) As a corollary of this lemma we obtain the known 
fact that for N=r- 2, QN(D)~ 0 is not only a necessary 
but also a sufficient condition for N representability. 
Indeed if N = r - 2, Q N(D) ~ p2 is equivalent to D ~ Q2 (P2) 

= P;-2. 

In terms of the eigenvalues (x, Jl) we have 

Q,~ ~ r~N' (r;T(~} 
Similarly with the help of (2. 8) we obtain 

Id = (1, 1), 

B _ (_ (r + 2)N - 2r _ 2 (N - 1) ) 
N - 2 (r + 1) (r - N) , (r + 1)(r - N) , 

C _ (r2 - (r + 2)N - 2(N - 1) ) 
N - 2 (r + 1)(r - N) , (r + 1)(r - N) • 

From this representation it is immediate that 
CN=B r _N• QN 

(3.8) 

(3.9a) 

(3.9b) 

(3.9c) 

(3.10) 

and since B r _N maps P;_N into p2 (cf. COleman5) we also 
conclude that C N induces a necessary condition for N 
representability. This completes the proof of Theorem 
3.1. 

Remark: If r or N is odd the proof of inequality (3. 1d) 
fails and therefore it is doubtful that in this case B N 

and C N are extreme in N N' No such doubt is possible 
for the operator endomorphisms Id and Q N' 
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3.3 Corollary of Theorem 3.1: Let r be an even num
ber not smaller than 4. 

(i) A necessary and sufficient condition for T(Cl, (3) 
EA 0 being order preserving is that Cl, {3 satisfy the 
inequalities 

01 ~ 0, 

{3~-401, 

2 
(r+1)Q+{3~--2 ' 

r-

2r 
rOl+{3~ (r+1)(r-2)' 

(3.l1a) 

(3. 11 b) 

(3.l1c) 

(3.l1d) 

(ii) The semigroup!l1 of all order preserving operator 
endomorphisms considered as a convex set is the con
vex hull of the following four extreme points: 

Id(D)=D, (3. 12a) 

Q2(D) = t~ 2) -1 [tr(D)A2 - 4(Dl/\ ]1) +( ;)DJ, (3. 12b) 

B 2 (D) = (r-2)~r+1) [tr(D)A
2
-D], (3. 12c) 

C2 (D) = (r _ 2)~r + 1) [r(DI
/\ ]1) - D]. (3. 12d) 

Proof: Since!l1 =N2 we obtain the result by putting 
N= 2 everywhere in Theorem 3.1. 

Notice that Q2 maps p2 onto P;-2 C;;; p~ and therefore 
for 2 ~ N ~ (r - 2), Q2 induces a sufficient condition for 
N representability. In Part II of this paper we shall 
attempt a systematic analysis of the set 5 N of all 
operator endomorphisms inducing sufficient conditions 
for N representability. In passing let us note the follow
ing interesting formula: 

r-N-2 r-N+2 
C NQ2 = 2 (r _ N) Q2 + 2 (r _ N) B2 (3.13) 

TABLE 1. Lower bounds induced by some members of N N to 
the ground state energy (in a. u. ) of He2 in an elliptical orbital 
basis5 of cardinality 8. 

Condition A- li- Energy (a. u. ) 

Id 1 1 -7.047 
QN -1 1 - 8. 887 
BN -k -1 - 31. 639 

6 

CN 
1 -1 - 35. 370 3 6 

!(Id+ QN)=X j 0 1 
!(Id+BN)=X2 k tr - 20. 606 

!(Id + CN) =X3 2 5 -10.686 3 IT 
!(QN+ BN)=X4 

2 5 - 13.090 -3 r1 
!(QN+ CN)=X5 

_.1 5 - 26.165 3 IT 
!(BN + CN) =X6 0 -! 
Yl 3 .1 - 32. 532 IT 2 

Y2 -fr ! -40.930 

Y3 -fr -.1. - 53. 205 
12 

Y4 3 -h - 62. 599 IT 
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(-1,1) ~-------*--------t (l,U 
QN 

3 (-.,.,0 ) 

FIG. 1. NN forN=4 and r=8. 

Id 

which can be easily proved by using the representation 
of the operator endomorphisms concerned as 2 x 2 
diagonal matrices. 

4. SOME NUMERICAL RESULTS 

In Table I, we present some lower bounds to the 
ground state energy for the system of electrons in He2, 
assuming an internuclear distance of 1. 00 a. u. and 
using an orbital basis 7 of cardinality r = 8. Each lower 
bound corresponds to imposition of the indicated neces
sary condition for N representability. Each necessary 
condition is of the operator endomorphism form 
(Do + ADI + IlD2) ~ 0 and is therefore a member of the 
set N N. The set N N for r = 8 and N = 4 is depicted in 
Fig. 1. 

We are interested in exploring the question as to 
which of the operator endomorphisms belonging to N N 

will induce the necessary conditions yielding the best 
lower bound. From Table I it is evident that for the 
points N N tested, Id gives the highest lower bound, 
namely - 7. 047 a. u. as compared with the value - 4. 631 
obtained by a complete configuration interaction with 
the same basis set. 

In order to understand this result observe that all 
singular operator endomorphisms (i, e., those for which 
A = 0 or Il = 0) yield the trivial lower bound - 00. Indeed 
we have the theorem. 

4.1 Theorem: If T is singular, then 

inf (KI D) = _ 00, 

DE 7""1 (p2) 

where D varies over the full preimage of p2 under T. 

Proof: Let K =Ko + Kl + K2 be the decomposition of K 
into its irreducible constituents and let us assume that 
the orbital space H is chosen in such a way that Kl *- 0 
and K2 *- O. (This condition is satisfied for our choice of 
the orbital basis. ) 

Now let us assume that the operator endomorphism 
is such that, e. g., A = O. Choose an eigenproj ection P 
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of Kl belonging to a strictly negative eigenvalue ~. 
[Since Kl '* 0 and tr(K1) = 0, such an eigenprojection 
exists. ] Then (Kll Pj; = (K11 P) = ~ < O. Now for real TJ 
define D(TJ) ~ Po + TJP1• Then for all TJ we have D(TJ) E SJ 
and T(D(TJ) = Po E p2; therefore D(TJ) E T-1( p2), but 

lim(K 1 D(TJ) = (Ko 1 PO> + limTJ~ = - 00. 

71"00 '1 .. 00 

Moreover, we have the following proposition. 

4.2 Proposition: Let f: N N - R be the function defined 
by 

f(T) ~ inf (K I D) ~ Eo for all TENN. 
DET-l(p2) 

In case T is nons in gular we also may write 

f(T) = lowest eigenvalue of '11 (K). 

Let To be a singular operator endomorphism, i. e. , 
AO = 0 or 110 = O. Then 

limf(T) = f(To) = - 00. 

T-TO 

Proof: Suppose T= (A, 11). Then T-1(K) =Ko + A-1K 1 
+ 1l-1K2. Let K ~ Kl + K2 and let 

TJI (T) ~ TJ2 (T) ~ ••• ~ TJp(T) 

be the eigenvalues of T-l (K). Since 

tr[ T-1 (K) 1 = tr(K) = 0 

we have 

TABLE II. Lower boundsj{Id) andj(QN) (in a.u.) to the 
ground state energy Eo of LiH IN = 4, r= 12) and H20 IN = 10, 
r=14). 

Condition T lower bound j(T) for lower boundj(T) for 
LiH H2O 

Id -9.531 -156.562 
QN -10.309 - 75. 509 
BH -75.324 - 370. 200 
eN -132.474 -1107.291 

Complete CI -7.887 - 75. 013 

lar operator endomorphisms. This leads to the conjec
ture that the best lower bound will be always attained 
at one of the four vertices of N N and most likely at 
either Id or Q N, since in terms of the Euclidean dis
tance B Nand eN will always be closer to the set of 
Singular operator endomorphisms than Id and Q N. For 
the same reason we conjecture that of the two values 
f(Id) andf(QN)' f(Id) will be the better lower bound if 
N < r/2 and f(Q N) will be the better lower bound if N 
> r/2. The results of the minimum Slater basis 8 cal
culations on LiH (N=4, r=12) and H20 (N=10, r=14) 
as reported in Table II are in agreement with these 
conjectures. 
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Moreover, we obtain for the sum of the squares 
p 

'0 TJ~ (T) = A -211 K 1112 + 11-211 K2112 , 
i=1 

where IIKIII stands for the Hilbert-Schmidt norm of K I , 

IIKil1 ~tr(K~)1/2. 

Since K j '* 0, i = 1, 2, it follows that 

lim TJl (T) = - 00 

T~TO 

and thus 

limf(T) = - 00, 

T-TO 

since f(T) = TJl (T) + (2t1 tr (K). 

(4.2) 

From Proposition 4.2 it is clear that f(T) will be the 
better a lower bound for Eo the "farther away" TEN N 
is from the cross-shaped figure representing the singu-
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Some aspects of the N-representability problem in finite 
dimensions. II. Operator endomorph isms which induce 
sufficient conditions 
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Given the set 5 N of all operator endomorphisms T with the property that whenever D is any 2-density 
operator, then T(D) is N-representable is considered. We specify a pair I Q2,PN) of extreme points of 
5 N which are related to each other via the particle-hole duality (Theorem 1.2). The rest of the paper is 
devoted to a complete characterization of the set 5 N of all operator endomorphisms T with the property 
that whenever D is any 2-density operator then T(D) is quasi-N-representable, i.e., satisfies the necessary 
conditions Id, QN' BN• and CN· 

I. INTRODUCTION 

This paper (SANP II) is devoted to the characteriza
tion of the convex set .s N of all operator endomorphisms 
which induce sufficient conditions for N representability. 
For definitions and notation we ask the reader to con
sult Secs. 1 and 2 of SANP 1,1 and the references2

•
3 

therein. 

For any T (" .s N define 

E(T) ~ inf (KI T(D), 
DE 2 

(1.1) 

where K is the truncated reduced Hamiltonian. It fol
lows from Lemma 1. 1 of SANP I that E(T) is an upper 
bound to the ground state energy Eo, 

(1. 2) 

It is easy to see that E(T) is a concave functional on 
SN, Le., 

for 0",:: Ii",:: 1. (1. 3) 

Clearly such a functional attains its minimum on an 
extreme point of .s N' This fact gives us enough motiva
tions to be interested in the set of all extreme points of 
.s N' Unfortunately we were unable to give a complete 
characterization of this set. The situation seems to 
be more complicated than in the case of IVN • However, 
observe that the family (..5N)N=2 ..... r_2 of convex subsets 
of A 0 (the set of all operator endomorphisms which pre
serve the trace, c. f. SANP 1,1 Sec. 2) has the following 
remarkable property: 

(1. 4) 

L e., the multiplication by Q;{ induces a bij ection be
tween .5 roN and .5 N. We say the family (5 N) is invariant 
under the particle-hole duality. For such a family of 
convex subsets of A 0 the following principle holds: 

L 1: Principle of the Particle-Hole Duality: Let (CN) 
be a family of convex subsets of A 0 which is invariant 
under the particle-hole duality, L e., 

C N =Q;l(C_N). 

Then 

(i) If TNECN for a",::N",::b, then TN~Q;lTr_NECN 
for r-b"'::N"'::r-a. 
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(ii) If TN is extreme in CN for a",:: N",:: b, then TN is 
extreme inCN for r-b"'::N"'::r-a. 

Proof: (0 Suppose TNECN for a",::N",:: b. Then Tr _N 

E C r..IV for r - b ",:: N ",:: r - a. But then we obtain by multi
plication by Qi/ that TN ~ Q;/ T r..IV E C N for r - b ",:: N 
",::r- a. 

(ii) Since the multiplication by Q;l, T- QjlT, induces 
an affine bijection between the convex sets Cr _N and CN 

it maps extreme points onto extreme points. 

At the end of SANP I we observed that Q2 E.5 N for 
2",:: N",:: (r - 2). From the principle of the jlarticle-hole 
duality it follows immediately that PN ~ Q2 = QilQ2 E.s N 
for 2",:: N",:: (r- 2). Q2 is extreme in .5 2,d SN and hence 
extreme in .5 N. The second part of the principle of the 
particle- hole duality implies that P N is extreme in 5 N. 

Thus we have the following theorem. 

1. 2: Theorem: The following two operator endomor
phisms are extreme points of 5N : 

Q2(D) = t; 2) -1 [tr(D)A2-4(Dl II [1) +Dj, (1. 5a) 

PN(D) = (~) t; 2) -1 [~; 2) tr(D)A2 

+2(N-2)(r-N)(D111 [1) + t;N)D]. (1.5b) 

In terms of the eigenvalues (A, J.L) we have 

Q2 = (- r: 2 ' (r - 2~(r - 3)) , (1. 6a) 

p_(r-N_2_(r-N)(r-N-1). 2 ~ 
N- N r-2' N(N-1) (r-2)(r-3))' 

(1. 6b) 

What are the other extreme points of .s N ? We were not 
able to settle this question. We have contented our
selves with solving a less difficult problem. 

Let DE fJ2 be a density operator. We say D is quasi
N-representable iff D satisfies the four necessary con
ditions for N representability induced by the operator 
endomorphisms Id, QN, EN, and eN' In view of Theorem 
3.1 of SANP I this means in case of even r and even N 
that D satisfies all necessary conditions for N repre
sentability of the operator endomorphism form 
(J tr(D)A2 + j3(d II [1) + I'D ~ O. 
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TABLE 1. List of all operator endomorphisms inducing sufficient conditions for quasi-N-representability. 

Name 

2 
- r-2 

r-N 2 ----
N r-2 

2 

(r+ l)(r - 2) 

r-N 2 
-----;:.;- (r+ l)(r- 2) 

2 {r-N + (r-2N)r(r-3)) 
(r+ l)(r- 2) \-----;:.;- 2N(r-N -1) 

2 (1 (2N - r)r(r- 3) ) 
- (r+ 1)(r- 2) + 2N(N - 1) 

r+4-3N 2 
3N-4 (r-2) 

r-N 4 
(r+ 2)N - 2r (r- 2) 

r-N 4 
- r2 - (r- 2)N (r- 2) 

(yZ - 8) - (:3r- 8)N 
(N-1)(r-2)(r-4) 

r-N 2(r-2)2-3(r-8)N 
N (r-N -l)(r- 2)(,,- 4) 

2(r- 2)N 
N(r-4) 

We sayan operator endomorphism T induces a suffi
cient condition for quasi-N-representability iff when
ever DE pz, then T(D) is quasi-N-representable, i. e., 
iff Tc5 2, QNTES2, BNTES 2, and CNTES 2. 

Let us denote by S N the set of all operator endomor
phisms which induce a sufficient condition for quasi
N-representability. Obviously 

S N ~ SN ~S 2 (1 Q;}(S 2) r I BiJ(S 2) (IC;1(5 2), 

where, e. g., Q;l (S 2) ~{Q;l TIT ~ S 2}' We are interested 
in ,the set of extreme points of S N. Clearly Q2 and P N 

= Q2 belong to this set. The remaining extreme points 
are operator endomorphisms occuring in the list of 
Table I. 

2. OPERATOR ENDOMORPHISMS WHICH INDUCE 
SUFFICIENT CONDITIONS FOR QUASI·N· 
REPRESENTABILITY 

This section is devoted to the proof of the following 
theorem. 

2,,1: Theorem: Let r be an even number not smaller 
than 8. Referring to Tabl~ I the following is a complete 
list of extreme points of S N: 

(i) for 2 <N <;: r/3: Q2' PN, B2, I N, UN; 

(ii) forr/3<;:N~(r+4)/3: Q2,PN,B2,JN,B;lB2, VN; 
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2 
(r-2)(r-3) 

(r-N)(r-N -1) 2 
N(N -1) (r- 2)(r- :1) 

2 
(r+ l)(r- 2) 

(r-N)(r-N-1) 2 

N W -1) (r+ 1)(r - 2) 

2 
(r+ 1)(r- 2) 

(r-N)(r-N -1) 2 
NW - 1) (r+ l)(r - 2) 

r(r-5)+3N 2 

:IN -4 (r- 2)(r- 3) 

(r-N)(r-N-1)r(r-2)-:lN 2 

N(N-l) 8(r-N)-4 (r-2)(r-3) 

r-N 1 ----
N-l r-2 

r-N 1 ----
N - 1 r- 2 

r-N 1 ----
N - 1 r- 2 

r-N 1 ----
N -1 r- 2 

2(r-N-l} 
N(r- 3) 

(iii) for (r+4)/3<;:N<;:r/2: Q2,PN,B2,JN,HilB2,C;lB2; 

(iv) for r/2 <;: N <;: 2(r - 2)/3: Q2, PN, Q;l B2,JN, B;i B2, 

CiJ B2; 

(v) for 2(r-2)/3<;:N<;:(2/3)r: Q2,PN,QiJB2,JN,C;lB2, 

VN; 

(vi) for (2/3)r<;:N«r-2): Q2,PN,Q;/Bz,JN, UN 
~ 1 ~ 

Because of the fact that S N = Q"N (S r-N) we may apply the 
principle of the particle- hole duality, which implies that 
(iv), (v), and (vi) are simply the dual statements of 
(iii), (ii), and (i), respectively, It therefore suffices to 
prove statements (i)-(iii). The proof is based on The
orem A 7 (see the Appendix) according to which the set 
of extreme points of the intersection of two closed con
vex bodies Ci and C2 is given by 

ext(C i i 1 Cz) = [(extC i ) i 1 C2 ] U [(extC2) n Ci J 

u ext(aC i n aC 2). 

Here aC denotes the boundary of the set C. Now 

SN=QNnBN 

where 
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and 

13 N ~ Bi/(S 2) n C/(S 2)' 

We therefore have to determine the extreme points of 
QN and BN. The following proposition gives a complete 
description of the extreme points of eN' 

2.2: Proposition: Let r be an even number not smaller 
than 6. Referring to Table I, the following is a com
plete list of the extreme points of eN ~ S 2 n Q;/ (52): 

(i) for 2<N~r/2: Q2,PN,B2,JN ,FN; 

(ii) for r/2 ~N< (r- 2): Q2'PN, Qi/B2, :iN' F N. 

Since eN = Q;l UZ r.oN) the principle of the particle- hole 
duality again applies and therefore it suffices to prove 
statement (i), (ii) being the dual statement. For the 
proof of (i) we need 

2.3: Lemma: In terms of the eigenvalues A, 11, S 2 is 
characterized by the following inequalities: 

2(r- I)A- rl1 ~ (r- 2), 

- (r-l)(r- 4)A+r(r- 3)11~ 2(r- 2), 

2(r - 1) A + r(r - 3) J.l ? - 2, 

(r+ 1)(r- 2)11? - 2. 

(2.1a) 

(2.1b) 

(2.lc) 

(2.1d) 

Proof: Substitute the expression for ex and f3 given by 
formulas (2.5) of Part I into the inequalities (3.10) of 
Part I. 

This lemma allows us to determine the two sets 
ext(5 2) n Qi/ (5 2) and ext[ QN1 (5 2) J n S 2' 

2.4: Lemma: Let r be an even number not smaller 
than 6 and let 2 <N ~ r/2. Then 

(i) ext(5 2) n QNl(5 2) ={Q2, B 2}, 

(ii) ext(Q,v15 2) rl5 2 ={PNt. 

Proof: With the help of Lemma 2.3 we shall first 
show that for 2 < N < (r - 2), Qjl ti 5 2 and Qi/C2 ti 52' Re
placing N by (r - N), this will imply that Id ti Qil(S 2) and 
Q;/C 2 ti 5 2' Next we shall show that Qil B2 E:: 52 iff r /2 
~ N < r - 2 and therefore (replacing N by r - N) that 
B 2E::Q,vl(5 2) iff 2<N~r/2. 

Since P N E:: 5 N c:.; 52 this will establish (ii). Finally 
since Q2 = Q,vl P roN E:: Q,vl (52) we obtain (i). 

Now we have in terms of A and 11, 

_1~( r-N (r-N)(r-N-l») 
QN ~ - N' N(N - 1) . 

Inserting the coordinates of Q,vl into (2. Ib) we obtain, 
after some algebraic manipulations, N? r- 2. It fol
lows that for N ~ r- 3, (2.1b) does not hold and there
fore Qi/ ti 52' Similarly inserting the coordinates of 

_1 2 r - N (r2 - 2r - 4 r - N - 1) 
QN C2=-(r+I)(r_2) N 4 'N-l 

into (2. lc) we obtain (N + 1) (N - r + 2) ? 0, an inequality 
which fails to hold for 2<N«r-2). Thus Q'i/S2tiS 2. 

Next we have 

2 (r-N (r-N)(r-N-l») 

(r+ l)(r- 2) '~' - N(N -1) 
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Id 

FIG. 1. 

Inserting the coordinates of Qi/ B2 into (2. la) leads to 
N(N - I)? 2 which for N? 2 is obviously satisfied. Simi
larly, substitution into (2.1b) leads to (N _1)2? (r- 3) 
which for r? 3 is trivially satisfied. Insertion of the co
ordinates of Q,vlB2 into (2. lc) and (2. Id) leads to N 
? (r - 1) /2 and N? r /2, respectively. Thus Q,vl B2 E:: S 2 

iff r/2~N<r-2. 

2.5: Lemma: Let r be an even number not smaller 
than 8. Then referring to Table I we have the following: 

for N = 3: as zn aQi/(S 2) ={FN, I N , P N}; 

for 3 <N < r/2: as 2 n aQ,vl(S 2) n a Q,vl (5 2) ={F N, I N}; 

for N = r/2: as z n aQ,vl(S 2) ={FN} U B21 Q,vlBz• 

Here B21 Q;/ B2 stands for the closed segment determined 
by B2 and Q,vlB2. [If r::=6 and N=3, then aS 2n aQil(52 ) 

={F N, P N} U B21 Q'i/ B2.J The situation for 3 < N < r /2 is 
represented by Fig. 1. 

Proof: as 2 is the union of the four closed segments 
Id I Qz, Q21 B 2, B21 C2, and C21 Id, whereas a Q,vl (5 2) com
prises the four segments Q,vlIPN , PNIQN1B2' QN1B2IQi/C2, 
and Qi/C2IQi;.I. For 2<N«r-2), QillPN and IdlQ2 in
tersect at the point 

F A(~ ~ r-N-l) =2(r-N-2)Id 
N~ N r-4' r-3 N(r-4) 

(N - 2)(r- 2) Q 
+ N(r- 4) 2' 

Furthermore, for 2<N~r/2, P N IQ,vlB2 and B 21C2 in
tersect at 

2 (r-N r(r-3){r-2N} 1) 
I N= (r+ l)(r- 2) -;r-+ 2N(r- N - 1) ,-

2(r- 2N + 1) C (N - 2)(r-N + 1) B 
N(r-N-l) 2+ N(r-N-l) 2' 

For 3<N<r/2, no other pair of segments from a5 2 and 
aQi/(52) respectively intersect so that in this case 

as 2n aQ;l(5 2) ={FN, I N}. 

In the case N = 3, the point P N touches the segment 
C21 Id and finally for N = r /2, Qi/ B2 touches the segment 
Bzl Cz so that the whole closed segment Bzl Qi/ Bz is a 
subset of the intersection of the two boundaries. 

Combination of the two foregoing lemmas with The
orem A 7 establishes statement (i) of Proposition 2.2, 
statement (ii) being a consequence of the extreme points 
of B N ~ B;l (5 2) n C,vl (5a). 
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FIG.2(a). 2(r+2)«r+2)N-s6(r-2). 

2.6: Proposition: Let r be an even number not smaller 
than 6. Then the extreme points of i3 N are given by the 
following: 

(i) for 2(1'+ 2) < (1'+2)N ~ 6(r- 2): 
{B";f B2, cil B2, CilQ2, Z N, XN , Y N}; 

(ii) for 6(r- 2) ~ (r+ 2)N ~ yZ- 41'+ 12: 
{B,:/B2, cilB2' B;jQ2' cilQ2, ZN} 

(iii) for yZ - 4r+ 12 ~ (1'+ 2)N< yZ- 4: 
{Bil B2, cil B2, B";fQ2, XN, YN, ZN}' 

Here, 

Z 1(0 _(r+1)(1'-2)(1'-N)) 
N , 1'(1'- 3)(N -1) , 

X A( 2(r+1)(r-N) 
N - 2r(1' _ 2) - (1' + 2)N ' 

(1'+ 1)(1'- N)[(1'+ 2)N - 2(3N - 4)]) 
2(N - 1)(21'(1' - 2) - (r + 2)N) , 

Y A.( (r+1)(1'-N)(1'-4) 
N- (1'-2)[r(1'-1)-(1'+2)N] ' 

(r+1)(r-N)[2(r-2)-N] \ 
2(1' - 2)(N - 1)[r(r - 1) - (r + 2)Nj J . 

Note that since EN is invariant under the particle hole
duality, the principle of the particle- hole duality ap
plies. Indeed it suffices to prove statements (i) and 
(ii), since (iii) is the dual of statement (0. Again the 
proof is based on Theorem A 7. 

2.7: Lemma: 

(i) for 2(r + 2) < (1' + 2)N ~ 6(1' - 2) we have: 

ext[BilCS 2)] ri C;lCS 2) ={B;l B2}, 

ext[Ch;l(s 2)] n B;l(j 2) ={C;lC2, c,vlQJ; 

(ii) for 6(r - 2) ~ (r + 2)N ~ yZ - 4r + 12 we have: 

ext[B;l CS 2) 1 n C'N1CS 2) ={Bil B2, B";QJ-; 

ext[ cil (S 2) 1 (I B;llS 2) ={ C;C 2' cll Q2}' 

P1'oof: First we show that for 2 < N < (1' - 2) we have 
BjltiC~1(S2)' Bilc2tiCillS2), and BilB2ticillS2)' Via 
the particle-hole duality this implies: cil ti B;lCSz), 
CilC2¢.B;l(S2), and C,vlB2EB;1(S2)' 

Finally we have to show that B/lQ2 E C;l(S 2) iff 6(r - 2) 
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FIG. 2(b). 6(r-2)-s(r+2)N<r2-4r+12. 

~ (r + 2)N and thus by duality cilQ2 E B;l(S 2) iff (r + 2)N 
~ yZ - 4r= 12. To show that B;l ti Cil(S 2) is equivalent to 
showing that 

B-1C = (_ r - (1' + 2)N 1) 
N N (r+2)N-2r' 

does not belong to S 2' 

Substitution of the coordinates into (2. Ib) leads to 
(1'-1)(r- 2)(1'- 4) ~ 0, an inequality which is violated 
for 1'? 6. In order to show that Bilc2¢.C;1(S2) it suffices 
to verify that 

Bilc NC2 = - (r + 1~(r _ 2) 

X (y.2_ (r+2)N r- 2r- 4 1\ 
(1' + 2)N - 21' 4 ' lJ 

does not belong to S 2' Indeed substitution of its coordi
nates into (2. 1c) gives N> 1'- 2. 

Next we have to show that 

B-1C B _ 2 (r - (1' + 2)N 1) 
N N 2-(r+1)(r-2) (r+2)N-21"-

belongs to S 2' Substitution of the coordinates into 
(2.1a) leads to N? 2. Similarly, substitution of the co
ordinates into (2. 1b) leads to N? 1 + 2/(r + 2), an in
equality which for N? 2 certainly holds. Insertion into 
(2. 1e) gives r(r-1) > 0, and (2. 1d) is obviously 
satisfied. 

Finally we have to show that 

C e-1 __ 2_ (r2 - (r + 2)N _1_\ 
N N Q2 - (r _ 2) (r + 2)N - 2r ' l' - 3 J 

belongs to S 2 iff 6(r - 2) ~ (r + 2)N. 

Substitution of the coordinates into (2. 1a) leads to 
6(r - 2) ~ (r + 2)N. Thus the above condition is neces
sary. That it is sufficient is a consequence of the fact 
that the remaining three inequalities are trivially sat
isfied. Indeed insertion of the coordinates into (2. Ib) 
leads to (r - 1) (r - 2) (1' - 4) ? 0, whereas insertion into 
(2. 1c) yields r(1'- 2)? 0. Finally (2. 1d) obviously holds. 

2.8: Lemma: Let r be an even number not smaller 
than 6. We have the following: 

(0 for 2(r+ 2) < (r+ 2)N ~ 6(r- 2): 
aB;l(S 2) n iJCil(52) =B/lBz\ c;:lc2 u {XN' YN, ZNr; 
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(ii) for 6(r - 2) .; (r + 2)N < r2 - 4r + 12: 
aBii(52) n ac,yl(S 2) = BN1 B21 c,ylc 2 U {ZN}' 

The situation is represented by Figs. 2(a) and 2(b). 

Proof: The segments B"ill BN1Q2 and Qii I CN
1Q2 inter

sect for all N = 2, ... , (r - 2) at the point 

2 -I r- 2 _1 
ZN =-BN +--BN Q2' r r 

For 2(r + 2) < (r + 2)N.; 6(r - 2) the segments BN! I BilQ2 
and cill cilc2 intersect at 

X _ 2(r- 2)(3r + 4) -1'(r + 2)N C-1 
N - (2r(r- 2) _ (r + 2)N)r N 

2(r - 2)(r - 4)(r + 1) e!c 
+ (2r(r- 2) - (r+ 2)N)r N 2 

Moreover, BN1Q21 Bii B2 and CN
11 CN

1C2 intersect at 

Y _ (r+ 2)(N - 2) C-1 
N - r{r(r _ 1) _ (r + 2)N) N 

r - rZ + 2r + 4 - (r + 1)(r + 2)N C-1C 
+ r(r(r-l)-(r+2)N) N 2' 

For (r+2)N=6(r- 2), X N and YN coincide with B1lQ2' 
In this case we have 

X N=YN=B,ylQ2 

= (r(r- 3»-1[4Cil + (r+ 1)(r- 4}Cilc2] 

For N(r + 2) ~ 6(r - 2}, BilQ2 E cil(5 2) and as long as 
N(r + 2) < rZ - 4r + 12, Z N is the only common boundary 
point of Bii(5 2} and Cil(52) besides the segment 
B!/B2 IC;/C 2 • 

Lemmas 2.7 and 2.8 together with Theorem A 7 es
tablish Proposition 2.6. 

Finally we have to apply Theorem A 7 to the 
intersection 

A 

SN=QNnBN· 

The following lemma tells us that all extreme points of 
QN with the exception of F N belong to B N' 

2.9: Lemma: Let r be an even number not smaller 
than 6. For 2 <N< (r- 2) we have 

(ex(JN) (iBN = (ex(lN) \{FN}. 

Proof: Since BN is invariant under the particle-hole 
duality it suffices to show that FN riBN and Q2, B2EBN. 
From the principle of the particle-hole duality we ob
tain immediately PN, QN

1B2EBN• Since I N EPN I QilB2 
andBN is convex we obtain I N EBN and hence I N EBN. 
Next notice that 

( 
",r-N 1 

J1. T).; J1.0=---
r-1 r- 2 

for all TEB N• Since J1.(FN}.; J1.0 leads to (N - 2)(N - r- 2) 
~Oweseethat for2<N«r-2}, FNriBN' 

In order to prove that B2EBN we have to show that 
BNB2' CNB2 E 52' Now 

4 (r+ 2)N - 2r N - 1) 
BNB2 (r+ 1)2(r_ 2) 4(r-N) 'r-N' 
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Inserting the coordinates of BNB2 into (2. la) yields 
N.; [(r + 2)/(r + 1) ](r - 1) which is satisfied for N.; (r - 1). 
Substituting into (2. 1b) yields 

N.; r + t - 13(4r + 2)-1, 

which for N.; r - 2 (and r ~ 1) is satisfied. Substitution 
into (2. 1c) leads to N.; (r + 3). Finally insertion of the 
coordinates into (2. 1d) gives N.; r + 2. 

Similarly, we have 

4 ( rZ - (r + 2)N N - 1) 
CNB2 (r+1)2(r_2) - 4(r-N} 'r-N . 

Substitution of these coordinates into (2. 1a) yields N 
.; r. Insertion of the coordinates into (2. 1b) leads to 
N.; r- 2/(2r+ 1} which for N~ r-1 (and r? 1) is sat
isfied. Substitution of the coordinates of CN B2 in (2. 1c) 
yields N.; r + 2. Finally, the argument concerning 
(2.1d) is the same as for BN B 2 • 

Conversely there are few extreme points of B N which 
belong to QN' We have 

2.10: Lemma: Suppose r is an even number not 
smaller than 8. Then 

(i) For 2 < N < (r - 2) none of the extreme points of 
BN with the possible exceptions of CN! B2 and BN! B2 be
long to QN; 

(ii) C;lB2EQN iff (r+4)/3.;N.; ir, 

B'ilB2EQN iffr/3""N~[2(r-2)]!3. 

Proof: (i) Because of the invariance of QN under the 
particle-hole duality it suffices to show that B;lQ2 ri S 2' 
ZN ri5 2 and XN, YN ri S 2' Now 

_1 (r+1)(r-N) 
Il(BN Q2) = - (r- 2)(r _ 3)(N _ 1) . 

Substitution of this value into (2. 1d) leads to 

16 
N~ (r- 2)+-

r+5' 

an inequality which for N < (r - 2) is obviously violated. 
Similarly substitution of Il (Z N) into (2. 1d) gives 

( 
2(r-3) ) 

N ~ 1 - '? _ r2 _ 2r _ 4 ' r :> r - 2, 

the second inequality holding for r? 4. In order to show 
that X N , YN ri S 2 it suffices to show that among the in
equalities (2. 1) there is one which is violated by both 
CNI and c;lc 2' Substitution of the coordinates of CNI into 
(2.1a) yields (N - r - 2)2"" 0 which is obviously violated. 
Substitution of the coordinates of 

_1 r - N ( r2 - 2r - 4 1) 
CNC2=r_2 rZ-(r+2)N'N":'1 

into (2. 1a) 

(N - 2)(N - r - 2) ? 0, 

which for 2 < N < (r - 2) is clearly violated. 

(ii) Notice that the second statement of (ii) is obtained 
from the first one via the particle- hole duality. 

Now let V N be the point of intersection of the line 
parallel to the A axis, 
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T ABLE II. Upper bounds to the ground state energy (in a. u. ) of 
He2 (N=4, r=8), LiH(N=4,1;:.=12), and H20 (N=10, r=14) 
induced by extreme points of 5 N (the set of endomorphisms 
which induce sufficient conditions for quasi-N-
represent ability ). 

He2 
Condition (N=4,r=8) 

Complete CI -4.631 
Q2 - 3. 208 
PN - 2. 643 
Bz - O. 630 
I N - O. 619 
UN 
B;}B2 /""'-/ -1. 078 
C,}B2=!liJB2 -1. 230 
QiJB2 =B2 - D. 619 

':£N - O. 630 

UN 
VN 
FN - O. 684 

1 r-N 
IN : f1 = (r _ 2) N _ 1 ' 

LiH H2O 
(N=4,8=12) (N= 10, r= 14) 

- 7.887 - 75. 013 
-4.670 - 67. 238 
- 7. 356 - 72. 689 
- 4.157 
- 5. 619 
- 4.786 
-4.786 

- 62.180 
- 63. 721 
- 63. 008 

- 4.786 
- 5. 559 - 65. 512 

with the segment IdIQ2' Explicitly, VN is given by 

(
r 2-8)-(3r-8)N 1 r-N) 

VN= (N-1)(r-2)(r-4)'(r-2)N-1 . 

Similarly, let VN be the point of intersection of the line 
IN with the segment Q;/I P N' Clearly 

Y.'I'=QN1(VN) 

(
r-N 2(r-2)2-(3r-8)N 1 r-N) 

= --;;- (r- N - l)(r- 2)(r- 4)' r- 2 N - 1 

is obtained from V N via the particle- hole duality. 

Obviously, 

cilB2E Q.N iff A(VN) "" A(CN
1Bz) "" A(VN). 

The inequality 

A(VN) "" A(CN
1B2) 

leads to (N - r + 2)(3N - r - 4) "" 0, which for N < (r - 2) 
implies N? t(r + 4). Similarly, the inequality 

A(Ci/B2) "" A(VN) 

Simplifies to (N - r + 2)(3N - 2r)? 0, which for N < (r- 2) 
implies N", tr. 

2.11: Lemma: Let r be an even number not smaller 
than 8. Then (referring to the list in Table I) : 

(i) for 2<N"" Y/3:aB N naQ.N={UN ,PN ,Q2t; 

(ii) for r /3"" N "" (r + 4) /3: aB N n a Q. N= (BN1 B21 V N) 
I.J{PN, Qz}; 

(iii) for (r+ 4)/3 "" N"" ~(r- 2) : 
aB N n a e N= (Bi/ BzI e,l B2) U lPN' Q2}; 

(iv) for i{r- 2) ""N"" tr: 
aB N n aQ.N= (VN IC;/Bz) U{PN , Qz}; 

(v) for tr""N< (r- 2): 
aBNr) aeN={UN,PN, Q2t. 
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Proof: For all N with 2 < N < (r - 2) we have PN, Qz 
E aBN n aeN' This is an immediate consequence of Eq. 
(3.12) of SANP I and its dual [obtained from it by re
placing N by (r- N) and subsequent multiplication by 
Qi/ J. 

Next notice that it suffices to prove statements (i), 
(ii), and (iii) since the remainder is obtained by appli
cation of the particle- hole duality. If 2 < N"" r /3, then 
no extreme point of B N belongs to eN and the segments 
B;/Q21 Bil Bz and Id I Q2 intersect at 

(r-3N)(N-2) _1 ( (r-3N)(N-2))_1 
UN = 2{r- N)(3N _ 4) BN Qz + 1- 2{r- N)(3N _ 4) BN Bz· 

If r/3 "" N ~ {1' + 4)/3 we have EN1 B z iCC Q.N and thus the 
whole segment BN1B21 VN belongs to eN' Finally, if 
(r+4)/3""N"" t{r-2) we have B;:}BzICN

1B2EQ.N' No other 
pair of segments of BN and eN intersect. 

Collecting the information from Lemmas 2.9-2.11 
and applying Theorem A 7 finally leads to the establish
ment of Theorem 2.1. 

3. NUMERICAL RESULTS 

Results of calculations on Hez, LiH, and HzO are 
presented in Table II. The calculations on He2 were 
conducted using an elliptical orbital basis4 of cardinal
ity 8; The internuclear separation of He2 for these cal
culations was 1. 00 a. u. The computations on LiH and 
HzO were carried out in a Slater type baSiS, using 
Poples' STO- 3G program5 to establish the integrals re
quired. An internuclear separation of 3.0 a. u. was for 
LiH and for H20 the O-H bond length used was 1. 814 
a. u. and the H-O-H angle was 104.7. 

For He2, N is 4 and r is 8, i. e., N = r/2. Therefore, 
this is an example of cases (iii) ~nd (iv) of Th~orem 
2.1. Note that forN=1';2, B2 =JN , andJN =B2 • From 
Table II, it can be seen that Q2 gives the best upper 
bound that can be obtained using quasi-N-representa
bility criteria and conditions of the operator endomor
phism form. 

For LiH, N is 4 and l' is 12, i. e., N = r/3. Thus, 
this is an example of cases (i) and (ii) of Theorem 2.1. 
For N=r/3, it should be noted that UN=BN1B2= VN. In 
this case P N turns out to be the best sufficient condition 
of operator endomorphism form. 

For H20, N is 10 and Y is 14, i. e., 21'/3 <N < r- 2. 
Hence, calculations on H20 reported in column 4 of 
Table II are an example of case (vi) of Theorem 2.1. In 
this case as well, P N is the best sufficient condition. 

It should be pointed out that in all the cases reported 
either Q2 or P N gave the best upper bounds for quasi
N - representability. In other words: The concave func
tiOfi,e.1 E(T) defined by (1. 1) considered as a functional 
on 5 N (the set of all operator endomorphisms which in
duce sufficient conditions for quasi-N-representability) 
attains its minimum at an extreme point of.5 N (the set 
of all operator endomorphisms which induce sufficient 
conditions for N representability). It follows that the 
reported upper bounds are the best upper bounds which 
can be obtained using sufficient conditions for N repre
sentability induced by operator endomorphisms. 
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The last line of Table II gives the results for F N, an 
extreme point of QN (cf. Proposition 2.2). The result 
shows that even if we allow T to vary over the larger 
set QN,2 .5 N,2 5 N of all operator endomorphisms T with 
the property that whenever DE pz, then T(D) satisfies 
the necessary conditions induced by Id and QN, E(T) 
does not provide us with a better upper bound than if 
we allow T to vary just over 5 N' These results seem 
to suggest that the upper bound E(T) (considered as a 
functional on 5 N) attains its minimum almost always 
either at the extreme point Qz or at the extreme point 
P N of 5 N and rarely at any of those other extreme points 
of SN which we have not been able to determine. 
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APPENDIX: SOME THEOREMS ABOUT CONVEXITY 

Throughout this appendix we assume L to denote a 
topological linear Hausdorff space. If C r;::: L is a subset 
we use C for the closure of C, CO for the interior of C 
and ac for the boundary of C. 

If x, Y ELand x '* Y we denote by [xy] the closed seg
ment and by (xy) the open segment connecting x and y 
respectively, i. e., 

[xy]={zELlz=ox+(1- o)y, odo,1]}, 

(xy) ={z E L Iz = ox + (1- o)y, OE (0, 1)}. 

A 1: Definition (Ref. 6, p. 11): (i) Let C r;::: L be a sub
set. A point y E L is called linearly accessible from C 
iff there exists x E C, X '*:l' such that (xy) r;::: C. The set 
of all points which are linearly accessible from C we 
denote by lina C. (ii) A point x E C r;::: L is called a core 
point of C iff for all y E L with Y '* x there exists a point 
z E (xy) such that [xzh:: c. The set of all core points we 
denote by core C. 

A2: Theorem (Ref. 6, Theorem 1. 14): Let C be a 
convex subset of L. Let y E lina C and x E core C. Then 
(xy)::'-;; core C. 

A3: Definition (Ref. 6, p. 13): A convex subset C of 
L is called a convex bod" iff it contains an interior 
point, i. e., if C°'* ¢. -

A4: Theorem (Ref. 6, Theorems 1. 16 and 1. 17): Let 
C::.-;; L be a convex body. Then 
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CO=core C, C=lina C. 

A5: Lemma: Let C c;: L be a closed convex body. Sup
pose that for some x, y E C, X '*y we have (xy) n ac '* 1/>. 
Thenx,YEaC. 

Proof: Suppose, e. g., x E Co. Then by Theorem A~ 
x is a core pOint. Since by the same theorem y E C = C 
= lina C, it follows from Theorem A2 that (xy)::'-;; core C 
=Co. Thus (xy) n ac =¢. 

A6: Definition: Let S::.-;; L be a subset. Then z E S is 
called extreme iff for all x, Y E L with x '* .V, Z E (xy) im
plies x ri S or y <i. S. We denote the set of all extreme 
points of S by ext S. 

A7: Theorem: Let Cb Cz'-: L be two closed convex 
bodies. Then 

ext(Cl n C z) = [(ext Cl ) n Cz] u [(ext C2) n Cl ] 

u ext(aCln aC2). 

Proof: That (ext Cl ) n C1 and (ext Cz) n C1 are subsets 
of ext(Cl n Cz) is trivial. 

Suppose z E ext(aCl n aC2) and assume Z E (xy) with 
x, Y E C1 n Cz. Then Z E (xy) n ac;, i = 1,2. It follows 
from Lemma A5 that x, y E aCl r: ac 2, a statement which 
contradicts the assumption that Z E ext(aCl n aC z). Hence 
x <i. Cl n Cz or y ti Cl ~, C z and therefore Z E ext(Cl r. Cz). 

Conversely, suppose Z E ext(Cl n C z) but Z <i. ext Cl 
and z ri ext Cz. Then Z E aCl n ac z• For suppose, e. g., 
that Z E cf. Since Z ECz\ext Cz there exists x, y E Cz, 
X '* Y with Z E (xy). Furthermore, since Z is a core point 
of Cl (Theorem A4) there exists x' E (zx) and y' E (zy) 
such that [zx'] u [zy'];;; Cl' Hence x', .1" E Clil C2, x' '* y' 
and Z E (x', :v'), a statement which contradicts Z E ext(Cl 
nCz). U 
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Remarks on the second order error in the variational 
calculation of expectation values * 

Saul T. Epstein 

Theoretical Chemistry Institute and Physics Department, University of Wiconsin, Madison, Wisconsin 53706 
(Received 20 May 1976; revised manuscript received 31 August 1976) 

A formula due to Gerjuoy [J. Math. Phys. 16, 761 (1975)1 is derived in a straightforward way by use of 
second order perturbation theory. 

Recently, as the result of a rather intricate analysis, 
Gerjuoy' was led to suggest a formula for estimating 
the second order error in certain variational estimates 
of expectation values, However, if2 (Ht -Et)cpt=O, then 
it is well known3 that F - ¢;W¢t as given in (Gl. 5) is 
simply the first order correction to ¢iWCPt which one 
would calculate using first order Rayleigh-Schrodinger 
perturbation theory with H t as the zero order Hamilto
nian and (H -Ht ) as the perturbation, Therefore, it 
would SE:em of interest to examine the consequences of 
applying second order perturbation theory, and indeed, 
as we will Show, this leads in a straightforward way to 
Gerjuoy's formula. 4 

Let cpU) and cp(2) be the first and second order correc
tions to CPt produced by the perturbation. Then assuming 
that our wavefunction is normalized through second 
order, the second order correction to the expectation 
value of W is obviously 

A(2)=cp(1)t Wcp (1) +cp(2)tW¢t +cp;Wcp(2), 

which since normalization implies that 

rfJ(J)t1>(I) +1>(2)tcpt +1>;rfJ(2)=0 

we can write as 

A(2)=cp(J)\W+;')CP(J) +cp(2)t(W+;')CPt +cpi(W+At )1>(2) 

(1 ) 

(2) 

(3 ) 

We have spoken of first and second order corrections. 
In Ref. 1 order is defined variationally with the well
defined but unknown quantity ocp being of first order. 
On the other hand, in perturbation theory, order is de
fined by the way in which one splits up the Hamiltonian. 
Now from our opening remarks it would appear that, 
to get agreement through first order between these two 
notions of order, one must treat (H -Ht ) as a first 
order quantity. However, for what follows it is impor
tant to note that this is too strong a conclusion. Namely 
the perturbation results are unaltered through first 
order if one subtracts from (H -H t ) any Hermitian 
operator X such that XCPt =0 (one must, of course, add 
it back in higher order) because as one easily sees, 
such an X makes no contribution to cp (1) • 

We now proceed to consider the variational order of 
H - jj mod, t and of H - H ~Od, t. For this purpose it is con
venient to write them as much as possible in terms of 
(H -Et)P f since this is a first order quantity (plus 
higher order corrections) in the variational sense. 
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Doing this, we find 

H -Hmod,t =Pt(H - E t ) +(H -Et)Pt =h, 

H-H~Od,t=h +(H-Et)Pt(H-Et)/Et=h +h', 

and note that h' has the property that 

h'1>t =0 

so that it should be kept in mind that the remarks at 

(4) 

(5) 

the end of the previous paragraph apply to it. Evidently 
then in the variational sense h is of first order plus 
higher order corrections while h I is of second order 
plus higher order corrections. However, since the 
higher order corrections we keep mentioning all involve 
ocp, they are actually unknown quantities. Therefore, it 
would seem that the best we can do if we want to make 
some contact between our perturbation calculation and 
Ref. 1 is to treat hand h I as of first and second order 
respectively in the perturbation sense, and ignore the 
corrections. ThiS, of course, means that the resulting 
~y),s will be only estimates of the second order varia
tional errors; however, this is also true of Gerjuoy's 
formula. 1 

Having settled on the perturbation order of things, 
we can finish our task quite quickly. First, using (5), 
it easily follows from the standard sum over states 
formula that when Ht=H:Ood,t, h' makes no contribution 
to cp (2). Further, since h is readily seen to have no 
matrix elements between states orthogonal to 1>1> it 
Similarly follows, assuming the standard normalization 
convention 

(6) 

that in either case its contribution to 1> (2) is simply a 
multiple of CPt' 5 Thus for either HI' cp(2) is simply a 
multiple of CPt whence, since 1>i( W + At)cpt = 0 we have as 
our final result that 

A (2) = cP U ) t ( W + At) cP (l ) • 

We will now show that this is Gerjouy's formula. 1 

First of all we note that cpih CPt = 0 and that hCPt 

(7) 

=(H -Et)cpt. Therefore, we can evidently write the 
standard formula for cP(J) namely cp(l)=Gt(h -rlJih1>t)cpt 
as 

cp(l)= Gt(H -Ethpt> (8) 

where 

(Ht-Et)Gt=Pt-l (9) 

with Ht equal to limod,t or H:"Od,t as the case may be. 
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Then, comparing6 (7), (8), and (9) with (G4.21), 
(G4.20), and (G4.1 7a) (and the analog of the latter with 
Hmod,t replaced by H~od,t) respectively, we see that as 
claimed we have derived Gerjuoy's formula. 

We conclude with two remarks. (i) In order to follow 
the variational approach, it is clearly essential to use 
an H t which is given as an explicit function of H and CPt, 
and even so one only gets estimates of the variational 
corrections. However, the general perturbation 
approach to calculating corrections is of course more 
flexible, being indifferent to the nature of H t • 1 Further, 
formally at least, it can be readily extended to calcu
late higher order corrections. (ii) Having chosen H t it 
is usually most natural to treat H -Ht as of first order 
with no higher order corrections. B However, if one is 
willing to entertain other possibilities then there is a 
multiple infinity to choose from, 9 with rate of conver
gence of the perturbation series being the only real 
theoretical criterion of choice among them, 

*A spects of the variation method 1. Research supported by 
National Science Foundation Grant MPS74-17494. 

IE. Gerjuoy, J. Math. Phys. 16, 761 (1975). The particular 
estimate we have in mind is that based on his (4.20) and 
(4. 17a). 

2 All unexplained notation is that of Ref. 1. We will refer to 
the equations of Ref. 1 by prefixing a G to the equation 
number. 

3See, for example, S. T. Epstein, The Variation Method in 
Quantum Chemistry (Academic, New York, 1974), pp. 236-
37. 
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4As we have said we must have (Ht-Et)cPt=O. This is ob
viously true for Ht = Hrm<4t but equally clearly it is not true 
for Ht = Hrood,t. However, if one simply replaces Hmod,t by 
H'nr>d,t=Htmd,t+EtPt then it is true, while neither the numeri
cal value of F nor any of the essential results of Ref. 1 are 
changed in any way. Indeed H'tmd,t is much "nicer" than 
Hnr>d,t in that when <fJt=¢ then H~,t=H. 

5For Ht = Hrmd,t this is a special case of a theorem due to 
W. H. Adams, J. Chem. Phys. 45, 3422 (1966); Statement 
(C) of Sec. n for the case M= I, M= 2. Note that his a is 
our P t and his P is (1 - p t ). 

6Note that from (G2.26) it follows that ll(2) is to be compared 
with - 6F(2). 

7The choices Ht = Hmod,t and Ht = H:"'<4t were especially singled 
out for consideration in Ref. 1 because for them conditions 
have been given [E. Gerjuoy, A. R. P. Rau, L. Rosenberg, 
and L. Spruch, Phys. Rev. A 9, 108 (1974); E. Gerjuoy, 
L. Rosenberg, and L. Spruch, J. Math. Phys. 16, 455 (1975») 
which guarantee that the Hylleraas functional, which is often 
needed in practice to approximate L t in calculating the first 
order correction, approaches its exact value from above, 
whatever set of trial functions one uses. In this connection 
it should be also pointed out that if, for example, through 
a series of linear variation calculations, one can locate E t 
in the (discrete) spectrum of whatever Ht one is using, then 
one can easily choose the trial functions so as to guarantee 
monotonic behavior for that H t (see Ref. 3, pp. 209-10). 

BSecond order calculations based on this point of view have 
been reported by S. Hameed and H. M. Foley, Phys. Rev. 
A 6, 1399 (1972). However, they wrote ll(2) in the computa
tionally more attractive interchanged form 

ll(2) = <fJ<1>t(W + At)<fJ(1} + LT(H - Ht)<fJw + <fJ(1)t(H - Ht)L t • 

9Thus one may write H= Ln vnH(n) , where v is an order 
parameter whose numerical value is 1, subject only to the 
conditions H(O) =Ht, H(1) =H - Ht -X, where X<P t = 0, and 
LnIfn)=H. In short, one can ask not only what is H(O), but 
also what is H(n)? [For the first question see S. T. Epstein, 
in perturbation Theory and Its Applications in Quantum 
MechaniCS, edited by C. H. Wilcox (Wiley, New York, 1966).) 
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Short derivation of a formula due to Lubkin * 
Saul T. Epstein 

Theoretical Chemisty Institute and Physics Department, University of Wisconsin, Madison, Wisconsin 53706 
(Received 25 May 1976) 

We present a short derivation of Lubkin's formula for the ensemble of maximum entropy subject to mean 
value constraints involving noncommuting operators. 

Recently, Lubkin1 found the ensemble which maxi
mizes the entropy subject to mean value constraints in
volving noncommuting operators. In this note we will 
gi ve a shorter and different derivation of his result. We 
will use the notation of Ref. 1 without further comment. 

We first note that by the standard argument, the en
semble which maximizes the entropy subject to the sin
gle constraint 

6 Ej TrPA j =6 EjQj 
j j 

with the Ej real numbers is 

P = exp [- A(E)2( EjA j] /Tr exp [- A(E)2( EjAJ 

where the real constant A(E) is determined by (1'). 

Secondly, we note that the constraints (2) of Ref. 1 
can be replaced by the constraints 

(1 ') 

6 Ej TrPA j =6 EjQJ> all real Ej. (2') 
j 
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Finally, we note that it then follows that 

P == exp ( - 2( AjA 1 /Tr exp (- 2( AjA j), (3') 

with the real numbers A i chosen to satisfy the con
straints (2) of Ref. 1, will (i) satisfy all the constraints 
(2'), and (ii) certainly maximize the entropy for one 
particular choice of the Ej, namely for the Ej determined 
by A(E)E j=Aj. 

Therefore, since the maximum subject to one con
straint cannot be less than the maximum subject to all 
constraints, we conclude, in agreement with Lubkin, 
that (3') is the ensemble which maximizes the entropy 
subject to all constraints. 

*Work supported by the National Science Foundation Grant 
MPS74-17494. 

IE. Lubkin, J. Math. Phys. 17, 753 (1976). 
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Correction of "Extension of the statistical mechanics of 
equilibrium to noncummutative constraints" to cover singular 
constraints 

Elihu Lubkin 

Department of Physics, University of Wisconsin- Wi/waukee, Milwaukee, Wisconsin 53201 
(Received 25 May 1976) 

In a previous paper, a Gibbs ensemble formula was given for that ensemble P which maximizes the 
entropy S = - Tr Pin P subject to constraints Tr PA, = Q" where the A, need not commute. An oversight, 
namely, cases where the constraints though consistent force P to be singular, is here properly incorporated 
into the argument. The result is that one must first regard the constraints as limiting discussion as much as 
possible to a sub-Hilbert space of constraint C, then the maximum entropy solution is indeed given by a 
Gibbs formula as before, but referring to matrices over C. 

In a previous paper, 1 a Gibbs-ensemble-like expres
sion was given for that density matrix P which maxi
mizes the entropy S = - Tr P lnP subj ect to c + 1 
constraints, 

TrPAI=QI. i=:O,l, .•• ,c, (1) 

namely, 

P=exp (-t AlA!) ; (2) 
1=0 

the AI are Hermitian matrices which need not commute; 
Ao = / (the unit matrix) and Qo = 1 express normalization, 
and the matrices are (n by n), n finite; the AI are real 
numbers. I have since found and corrected an error in 
(I), then also learned that Wichmann had already done 
the whole thing. 2 Because of the great interest potential 
in the subject-a thermodynamics of noncommuting ob
servables ("quantum thermodynamics") may develop or 
is developing3-I hope that this presentation of the cor
rection of (I) is not entirely superfluous, especially as 
the approach of (I) is perhaps more elementary than 
Wichmann's earlier discussion, even after the present 
correction is incorporated. 

In (I), it was asserted that (2) is the form of the 
maximum-entropy solution whenever the constraints 
(1) are consistent, i. e., whenever the set of P satis
fying (1) is nonempty. This caution is unfortunately in
adequate. The mistake was made by jumping into a 
Lagrange-multiplier argument without sufficient care 
about possible solutions on the boundary of the domain. 
The corrected result is Theorem 1 below; Theorem 2 
is a slightly weaker but simpler statement. 

Definition: For any Hermitian H, let EH =/ - O(H), 
where O(H) is the null space of H. Thus, TrEH = rank H 
EH is "H's projection." 

Theorem 1: 3! projection E of maximal rank r out of 
those Ep where P satisfies the constraints (1). The en
semble of maximal entropy among P satisfying (1) is 
given by (2) in terms of (r by r) matrices over the r
dimensional constraint space C =ImE. 

Definition: If the constraints (1) imply that P is singu
lar, they will be called singular constraints; if not, 
nonsingular. 
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Theorem 2: If the constraints (1) are nonsingular, 
then the ensemble of maximal entropy satisfying (1) is 
given by (2). 

Proof: Theorem 2 is an evident corollary of Theorem 
1. 

As for the proof of Theorem 1, only the modification 
of the argument of Ref. lowing to care about the bound
ary will be discussed. 

The geometrical context will be the n2 real-dimen
sional vector space of Hermitian matrices. The domain 
D over which the maximum is sought is the intersection 
of the affine space of P satisfying the constraints (1) 
with the nonnegative cone. D is convex. By "boundary" 
B is meant the set of singular P E: D, detp = 0. 

First, the original proof correctly gives the result (2) 
if it is known that the solution does not belong to B. 
Furthermore, if there is any point of D not in B, i. e., 
PoE: D, detpo * 0, then the solution indeed cannot belong 
to B: This is because the entropy S =: - Tr P lnP has 
a +00 slope at the boundary owing to (d/dx)(-xlnx) 
= + 00 at x = 0, increasing towards the interior, hence 
S also increases upon any small motion away from the 
boundary of D, in particular over a line segment drawn 
to Po. 

The task remaining is to discuss singular constraints, 
D = B. For this purpose, a minimal proj ection E is 
sought such that P E = P for all P E: D. If such an E < / 
exists, then the problem can be reformulated in the 
sub-Hilbert space ImE, and this iterated until the 
former case B c ~D is obtained. (Indeed choosing E 
minimal obviates repetitions.) The desideratum E < / 
follows from "E = E p for any P of maximal rank in D" 
(of course E p < / since any P r:: D is singular)' "E = E p" 
follows from the following lemma: 

Lemma: If PE:D, "2:;E:D, 0'>0, /3~O, 0'+/3=1, 
then Ep~Ep~E",p.8r;o 

Proof of Lemma: We must show that if (aP + 13"2:;)x = 0 
for a vector x, then Px = O. Indeed, a (x, Px) + 13(x, "2:;x) 
= 0. Both (x, Px) and (x, "2:;x) are nonnegative. Hence 
(x,Px)=O, or TrPIx)(x I =0, or Plx)(xl =0,4 or Px=O, 
which proves the lemma. 
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Proof of Theorem 1, concluded: Suppose P is of maxi
mal rank in D. Then the lemma shows any line segment 
from P to any other ~ in D to pass through aP + f3~ of 
materially greater rank, a contradiction, unless 
E",p+~r; = Ep, which is therefore proven. If ~ is also of 
maximal rank, then also E",p+~r;=Er;, hence Ep=Er;=E 
is universal. If ~ E D is however arbitrary, E = E",p+~r; 
~ Er; proves that ImE indeed contains ImEr; for all 
L.; F D. This allows collapse of the whole problem to the 
sub-Hilbert space lmE=C. 

ACKNOWLEDGMENT 
I noticed my omission of singular constraints while 

corresponding with S. T. Epstein about something else: 
Epstein sent me a very brief argument5 which attempts 
to derive the result of (I) and Ref. 2 from Gibbs' origi
nal case of only one nontrivial observable, using an 
argument similar to my discussion of angular momen-

CUMULATIVE AUTHOR INDEX 

tum in (I). Unfortunately, the brief argument fails with
out the hypothesis that there exists some ensemble of 
form (2) which satisfies (1); to know only that the set of 
ensembles satisfying (1) is nonempty is not enough, 
This further hypotheSiS is not needed here. There is 
also a comment in Ref. 2 to the effect that much work 
can be omitted if one is willing to be incautious about 
domains. 

IE. Lubkin, J. Math. Phys. 17, 753 (1976), hereafter called 
CO. 

2E.H. Wichmann, J. Math. Phys. 4, 884 (1963). 
3W. Bayer and W. Ochs, Z. Naturforsch. 28a, 693-701 (1973) 
and Refs. 1-4 therein to the "Jaynes" approach, and W. 
Ochs and W. Bayer, ibid., 1571-85 (1973). Bayer and 
Ochs are interested in generalizations to infinite-dimension
al Hilbert space. 

4E. Lubkin, J. Math. Phys. 15, 663 (1974), see If 59, p. 670. 
5S. T. Epstein, J. Math. Phys. 18, 344 (1977). 

All authors published so far in the current volume are listed alphabetically with the issue and page 
numbers following the dash. A cumulative author and subject index covering each volume is pub
lished annually. An (E) after the page number indicates an Erratum. 

Ahsar, 1.(2) 329, 335 
Ali, S. Twareque-(2) 219 
Antippa, Adel F.-(l) 173 
Arrowsmith, D.K.-(2) 235 

Backhouse, Nigel B.--(2) 239 
Banerjee, A.-(2) 265 
Baumann, Klaus·(l) 171 
Baumgarten, D.-(2) 267 
Beckers, J .... ( I 1 72 
Bleistein, Norman-(2) 194 
Boersma, J.-.(2) 321 
Bowden, R.L.- (2) 281 
Braunss, G ... ·(2) 267 
Bricmont, 1.··( I) 37 

Cameron, W.L. -(2) 281 
Chakrabarty, N.--(2) 265 
Christensen, Mark J.-(1) 113 
Cohen, Jack K. -(2) 194 
Coleman, A.J.·(2) 329 
Corones, James (l) 163 

Dankel, Thad, Jr.-(2) 253 
Dassios, George-(1) 126 
Debacker-Mathot, F ... (1) 37 
Deutsch, C.' ·(2) 292 
Dobson, J. (1) 116 

Doebner, H.D.-(l) 138 
Dollard, John D.-(2) 229 

Eimerl, David -(1) 106 
Epstein, Saul T.-(2) 342, 344 
Ernst, Frederick 1.-(2) 233 
Essam, J.W.-(2) 235 

Folland, N.O.--(I) 31 
Froman, Nanny (l) 96 
Froman, Per Olof-( I) 96 
Furutani, Y.-(ll 292 

Galloway, Gregory 1. -(2) 250 
Geller, Murray -( 1) I 87 
Gilmore, R ... (l) 17 

Hegerfeldt, Gerhard C.-(1) 171 
Hietarinta, Jarmo-(1) 65 
Hsu, J.P.--(I) 100 

Jang, Pong Soo··(1) 41 

Kalnins, E.G. ( I) 1; (2) 271 
Ko, M.-( I) 58 
Kumei, Sukeyuki-(2) 256 
Kummer, H. ·(2) 329, 335 

346 J. Math. Phys., Vol. 18, No.2, February 1977 

Lee, S.W.-(2) 321 
Lehnigk, Siegfried H. -( I) 104 
Lockwood, Loren A.-( I) 45 
Lubkin, Elihu-(2) 345 
Lucke, W.-(I) 138 

Mac, E.-(I) 100 
Mansouri, Freydoon-(l) 52 
Miller, W., Jr.-(1) 1; (2) 271 
Miyazaki, Eizo-( 2) 21 5 
Morris, H.C.-(2) 285 

Nahm, W.-(1} 146, 155 
Nayak, B.K.-(2) 289 
Newman, C.M.-(l) 23 
Newman, t.T.-(I) 58 

Oliveira, Colber G.-(1) 120 

Patera, J. --(1) 72 
Peccia, Anthony-(2) 202 
Penrose, R.-·(I) 58 
Perroud, M. -(1) 72 
Phares, Alain 1.--(1) 173 
Pick, Stepan-(l) 118 
Prugovecki, E. -(2) 219 

Ray, Dipankar-(2) 245 
Rittenberg, V.-(l) 146,155 
Rund, Hanno-(1) 84 
Ruttimann, Gottfried T.-(2) 189 

Scheunert, M.-(1) 146, 155 
Schulman, L.S.-(I) 23 
Schwartz, Charles--(1) 110 
Skagerstam, Bo-Sture K.-(2) 308 
Spohn, Herbert-(I) 188 (E) 
Steiger, Arno D.-·(2) 312 

Tiwari, R.N.-(2) 289 
Torres, P.L.-(2) 301 

van Nieuwenhuizen, P. -(I) 182 

Wagner, 0.-(2} 267 
Wald, Robert M.-(1) 41 
Wang, A.P.·(1) 47 
Weaver, D.L.-(2) 306 
Weingarten, Don--(I) 165 
Wintemitz, P.--(I} 72 
Wu, c.c.--(I) 182 

Yasumori, Iwao-(2) 215 

Zweifel, P.F.--(2) 281 

Cumulative author index 346 


	JMP, Volume 18, Issue 02, Page 0189
	JMP, Volume 18, Issue 02, Page 0194
	JMP, Volume 18, Issue 02, Page 0202
	JMP, Volume 18, Issue 02, Page 0215
	JMP, Volume 18, Issue 02, Page 0219
	JMP, Volume 18, Issue 02, Page 0229
	JMP, Volume 18, Issue 02, Page 0233
	JMP, Volume 18, Issue 02, Page 0235
	JMP, Volume 18, Issue 02, Page 0239
	JMP, Volume 18, Issue 02, Page 0245
	JMP, Volume 18, Issue 02, Page 0250
	JMP, Volume 18, Issue 02, Page 0253
	JMP, Volume 18, Issue 02, Page 0256
	JMP, Volume 18, Issue 02, Page 0265
	JMP, Volume 18, Issue 02, Page 0267
	JMP, Volume 18, Issue 02, Page 0271
	JMP, Volume 18, Issue 02, Page 0281
	JMP, Volume 18, Issue 02, Page 0285
	JMP, Volume 18, Issue 02, Page 0289
	JMP, Volume 18, Issue 02, Page 0292
	JMP, Volume 18, Issue 02, Page 0301
	JMP, Volume 18, Issue 02, Page 0306
	JMP, Volume 18, Issue 02, Page 0308
	JMP, Volume 18, Issue 02, Page 0312
	JMP, Volume 18, Issue 02, Page 0321
	JMP, Volume 18, Issue 02, Page 0329
	JMP, Volume 18, Issue 02, Page 0335
	JMP, Volume 18, Issue 02, Page 0342
	JMP, Volume 18, Issue 02, Page 0344
	JMP, Volume 18, Issue 02, Page 0345

